Dynamic Modeling, Predictive Control and Performance Monitoring A Data-driven Subspace Approach /

A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the p...

Full description

Main Authors: Huang, Biao. (Author, http://id.loc.gov/vocabulary/relators/aut), Kadali, Ramesh. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2008.
Edition:1st ed. 2008.
Series:Lecture Notes in Control and Information Sciences,
Subjects:
Online Access:https://doi.org/10.1007/978-1-84800-233-3
LEADER 04480nam a22006375i 4500
001 978-1-84800-233-3
003 DE-He213
005 20210617004710.0
007 cr nn 008mamaa
008 100301s2008 xxk| s |||| 0|eng d
020 |a 9781848002333  |9 978-1-84800-233-3 
024 7 |a 10.1007/978-1-84800-233-3  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Huang, Biao.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Dynamic Modeling, Predictive Control and Performance Monitoring  |h [electronic resource] :  |b A Data-driven Subspace Approach /  |c by Biao Huang, Ramesh Kadali. 
250 |a 1st ed. 2008. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2008. 
300 |a XXIV, 242 p. 63 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 
505 0 |a I Dynamic Modeling through Subspace Identification -- System Identification: Conventional Approach -- Open-loop Subspace Identification -- Closed-loop Subspace Identification -- Identification of Dynamic Matrix and Noise Model Using Closed-loop Data -- II Predictive Control -- Model Predictive Control: Conventional Approach -- Data-driven Subspace Approach to Predictive Control -- III Control Performance Monitoring -- Control Loop Performance Assessment: Conventional Approach -- State-of-the-art MPC Performance Monitoring -- Subspace Approach to MIMO Feedback Control Performance Assessment -- Prediction Error Approach to Feedback Control Performance Assessment -- Performance Assessment with LQG-benchmark from Closed-loop Data. 
520 |a A typical design procedure for model predictive control or control performance monitoring consists of: 1. identification of a parametric or nonparametric model; 2. derivation of the output predictor from the model; 3. design of the control law or calculation of performance indices according to the predictor. Both design problems need an explicit model form and both require this three-step design procedure. Can this design procedure be simplified? Can an explicit model be avoided? With these questions in mind, the authors eliminate the first and second step of the above design procedure, a “data-driven” approach in the sense that no traditional parametric models are used; hence, the intermediate subspace matrices, which are obtained from the process data and otherwise identified as a first step in the subspace identification methods, are used directly for the designs. Without using an explicit model, the design procedure is simplified and the modelling error caused by parameterization is eliminated. 
650 0 |a Control engineering. 
650 0 |a System theory. 
650 0 |a Chemical engineering. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Computational complexity. 
650 1 4 |a Control and Systems Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19010 
650 2 4 |a Systems Theory, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13070 
650 2 4 |a Industrial Chemistry/Chemical Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/C27000 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15036 
650 2 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11022 
700 1 |a Kadali, Ramesh.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781848007215 
776 0 8 |i Printed edition:  |z 9781848002326 
830 0 |a Lecture Notes in Control and Information Sciences,  |x 0170-8643 
856 4 0 |u https://doi.org/10.1007/978-1-84800-233-3 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
912 |a ZDB-2-LNI 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)