Iterative Learning Control for Electrical Stimulation and Stroke Rehabilitation

Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory fol...

Full description

Main Authors: Freeman, Chris T. (Author, http://id.loc.gov/vocabulary/relators/aut), Rogers, Eric. (http://id.loc.gov/vocabulary/relators/aut), Burridge, Jane H. (http://id.loc.gov/vocabulary/relators/aut), Hughes, Ann-Marie. (http://id.loc.gov/vocabulary/relators/aut), Meadmore, Katie L. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: London : Springer London : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Control, Automation and Robotics,
Subjects:
Online Access:https://doi.org/10.1007/978-1-4471-6726-6
LEADER 04449nam a22006255i 4500
001 978-1-4471-6726-6
003 DE-He213
005 20210617061642.0
007 cr nn 008mamaa
008 150625s2015 xxk| s |||| 0|eng d
020 |a 9781447167266  |9 978-1-4471-6726-6 
024 7 |a 10.1007/978-1-4471-6726-6  |2 doi 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Freeman, Chris T.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Iterative Learning Control for Electrical Stimulation and Stroke Rehabilitation  |h [electronic resource] /  |c by Chris T. Freeman, Eric Rogers, Jane H. Burridge, Ann-Marie Hughes, Katie L. Meadmore. 
250 |a 1st ed. 2015. 
264 1 |a London :  |b Springer London :  |b Imprint: Springer,  |c 2015. 
300 |a VII, 124 p. 69 illus., 34 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6786 
505 0 |a Iterative Learning Control: An Overview -- Technology Transfer to Stroke Rehabilitation -- ILC based Upper-Limb Rehabilitation— Planar Tasks -- Iterative Learning Control of the Unconstrained Upper Limb -- Goal-oriented Stroke Rehabilitation. 
520 |a Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ muscles while they are repeatedly performing a task in response to the known effects of stimulation in previous repetitions. As the motor nerves and muscles of the arm reaquire the ability to convert an intention to move into a motion of accurate trajectory, force and rapidity, initially intense external stimulation can now be scaled back progressively until the fullest possible independence of movement is achieved. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Rehabilitation medicine. 
650 0 |a Biomedical engineering. 
650 0 |a Physiotherapy. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Rehabilitation Medicine.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H55030 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 
650 2 4 |a Physiotherapy.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/H78000 
700 1 |a Rogers, Eric.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Burridge, Jane H.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Hughes, Ann-Marie.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Meadmore, Katie L.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9781447167273 
776 0 8 |i Printed edition:  |z 9781447167259 
830 0 |a SpringerBriefs in Control, Automation and Robotics,  |x 2192-6786 
856 4 0 |u https://doi.org/10.1007/978-1-4471-6726-6 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)