Analysis and Synthesis of Dynamic Systems with Positive Characteristics

This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus o...

Full description

Main Author: Shen, Jun. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://doi.org/10.1007/978-981-10-3880-8
LEADER 03582nam a22005895i 4500
001 978-981-10-3880-8
003 DE-He213
005 20210618202618.0
007 cr nn 008mamaa
008 170327s2017 si | s |||| 0|eng d
020 |a 9789811038808  |9 978-981-10-3880-8 
024 7 |a 10.1007/978-981-10-3880-8  |2 doi 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Shen, Jun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Analysis and Synthesis of Dynamic Systems with Positive Characteristics  |h [electronic resource] /  |c by Jun Shen. 
250 |a 1st ed. 2017. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a XXIII, 123 p. 16 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Chapter 1. Introduction -- Chapter 2. Positive Systems with Retarded Delays -- Chapter 3. Positive Systems with Distributed Delays -- Chapter 4. Controller Synthesis of Positive Systems -- Chapter 5. Model Reduction for Discrete-time Positive Systems with Inhomogeneous Initial Conditions -- Chapter 6. Linear Delay Systems with Cone Invariance -- Chapter 7. Positivity and Stability of Coupled Differential-difference Equations with Time-varying Delays -- chapter 8. Conclusion and Future Work. 
520 |a This thesis develops several systematic and unified approaches for analyzing dynamic systems with positive characteristics or a more general cone invariance property. Based on these analysis results, it uses linear programming tools to address static output feedback synthesis problems with a focus on optimal gain performances. Owing to their low computational complexity, the established controller design algorithms are applicable for large-scale systems. The theory and control strategies developed will not only be useful in handling large-scale positive delay systems with improved solvability and at lower cost, but also further our understanding of the system characteristics in other related areas, such as distributed coordination of networked multi-agent systems, formation control of multiple robots. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Artificial intelligence. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811038792 
776 0 8 |i Printed edition:  |z 9789811038815 
776 0 8 |i Printed edition:  |z 9789811099915 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-981-10-3880-8 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)