Applied Dynamics

Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mech...

Full description

Main Authors: Schiehlen, Werner. (Author, http://id.loc.gov/vocabulary/relators/aut), Eberhard, Peter. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-319-07335-4
LEADER 03600nam a22005655i 4500
001 978-3-319-07335-4
003 DE-He213
005 20210618063221.0
007 cr nn 008mamaa
008 140905s2014 gw | s |||| 0|eng d
020 |a 9783319073354  |9 978-3-319-07335-4 
024 7 |a 10.1007/978-3-319-07335-4  |2 doi 
050 4 |a TA349-359 
072 7 |a TGMD  |2 bicssc 
072 7 |a TEC009070  |2 bisacsh 
072 7 |a TGMD  |2 thema 
082 0 4 |a 620.1  |2 23 
100 1 |a Schiehlen, Werner.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Applied Dynamics  |h [electronic resource] /  |c by Werner Schiehlen, Peter Eberhard. 
250 |a 1st ed. 2014. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2014. 
300 |a XI, 215 p. 78 illus., 3 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a From the Contents: Introduction -- Purpose of applied dynamics -- Contribution of analytical mechanics -- Basics of kinematics -- Free systems -- Basics of dynamics -- Dynamics of a point -- Principles of mechanics -- Principle of virtual work -- Multibody systems -- Local equations of motion -- Finite-Elemente systems -- Local equations of motion -- Continuous systems -- Local equations of motion -- State equations of mechanical systems -- Nonlinear state equations -- Numerical equations -- Integration of nonlinear differential equations. 
520 |a Applied Dynamics is an important branch of engineering mechanics widely applied to mechanical and automotive engineering, aerospace and biomechanics as well as control engineering and mechatronics. The computational methods presented are based on common fundamentals. For this purpose analytical mechanics turns out to be very useful where D’Alembert’s principle in the Lagrangian formulation proves to be most efficient. The method of multibody systems, finite element systems and continuous systems are treated consistently. Thus, students get a much better understanding of dynamical phenomena, and engineers in design and development departments using computer codes may check the results more easily by choosing models of different complexity for vibration and stress analysis. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Automotive engineering. 
650 0 |a Computer mathematics. 
650 1 4 |a Theoretical and Applied Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15001 
650 2 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Automotive Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T17047 
650 2 4 |a Computational Science and Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14026 
700 1 |a Eberhard, Peter.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783319073361 
776 0 8 |i Printed edition:  |z 9783319073347 
776 0 8 |i Printed edition:  |z 9783319374574 
856 4 0 |u https://doi.org/10.1007/978-3-319-07335-4 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)