Head and Neck Tumor Segmentation First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings /

This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took p...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Andrearczyk, Vincent. (Editor, http://id.loc.gov/vocabulary/relators/edt), Oreiller, Valentin. (Editor, http://id.loc.gov/vocabulary/relators/edt), Depeursinge, Adrien. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 12603
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-67194-5
LEADER 04862nam a22005655i 4500
001 978-3-030-67194-5
003 DE-He213
005 20210625010234.0
007 cr nn 008mamaa
008 210112s2021 gw | s |||| 0|eng d
020 |a 9783030671945  |9 978-3-030-67194-5 
024 7 |a 10.1007/978-3-030-67194-5  |2 doi 
050 4 |a TA1630-1650 
072 7 |a UYQV  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQV  |2 thema 
082 0 4 |a 006.6  |2 23 
245 1 0 |a Head and Neck Tumor Segmentation  |h [electronic resource] :  |b First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings /  |c edited by Vincent Andrearczyk, Valentin Oreiller, Adrien Depeursinge. 
250 |a 1st ed. 2021. 
264 1 |a Cham :  |b Springer International Publishing :  |b Imprint: Springer,  |c 2021. 
300 |a X, 109 p. 32 illus., 29 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12603 
505 0 |a Overview of the HECKTOR Challenge at MICCAI 2020: Automatic Head and Neck Tumor Segmentation in PET/CT -- Two-stage approach for segmenting gross tumor volume in head and neck cancer with CT and PET imaging -- The Head and Neck Tumor Segmentation Using nnU-Net with Spatial and Channel 'Squeeze & Excitation' Blocks -- Squeeze-and-Excitation Normalization for Automated Delineation of Head and Neck Primary Tumors in Combined PET and CT Images -- Automatic Head and Neck Tumor Segmentation in PET/CT with Scale Attention Network -- Iteratively Refine the Segmentation of Head and Neck Tumor in FDG-PET and CT images -- Combining CNN and Hybrid Active Contours for Head and Neck Tumor Segmentation in CT and PET images -- Oropharyngeal Tumour Segmentation using Ensemble 3D PET-CT Fusion Networks for the HECKTOR Challenge -- Patch-based 3D UNet for Head and Neck Tumor Segmentation with an Ensemble of Conventional and Dilated Convolutions -- Tumor Segmentation in Patients with Head and Neck Cancers using Deep Learning based-on Multi-modality PET/CT Images -- GAN-based Bi-modal Segmentation using Mumford-Shah Loss: Application to Head and Neck Tumors in PET-CT Images. 
520 |a This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 pandemic. The 2 full and 8 short papers presented together with an overview paper in this volume were carefully reviewed and selected form numerous submissions. This challenge aims to evaluate and compare the current state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 204 delineated PET/CT images was made available for training as well as 53 PET/CT images for testing. Various deep learning methods were developed by the participants with excellent results. 
650 0 |a Optical data processing. 
650 0 |a Bioinformatics. 
650 0 |a Machine learning. 
650 0 |a Software engineering. 
650 1 4 |a Computer Imaging, Vision, Pattern Recognition and Graphics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22005 
650 2 4 |a Computational Biology/Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23050 
650 2 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Software Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14029 
700 1 |a Andrearczyk, Vincent.  |e editor.  |0 (orcid)0000-0003-0793-5821  |1 https://orcid.org/0000-0003-0793-5821  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Oreiller, Valentin.  |e editor.  |0 (orcid)0000-0002-7794-6916  |1 https://orcid.org/0000-0002-7794-6916  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Depeursinge, Adrien.  |e editor.  |0 (orcid)0000-0002-2362-0304  |1 https://orcid.org/0000-0002-2362-0304  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783030671938 
776 0 8 |i Printed edition:  |z 9783030671952 
830 0 |a Image Processing, Computer Vision, Pattern Recognition, and Graphics ;  |v 12603 
856 4 0 |u https://doi.org/10.1007/978-3-030-67194-5 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
912 |a ZDB-2-LNC 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)