Head and Neck Tumor Segmentation First Challenge, HECKTOR 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4, 2020, Proceedings /

This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took p...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Andrearczyk, Vincent. (Editor, http://id.loc.gov/vocabulary/relators/edt), Oreiller, Valentin. (Editor, http://id.loc.gov/vocabulary/relators/edt), Depeursinge, Adrien. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2021.
Edition:1st ed. 2021.
Series:Image Processing, Computer Vision, Pattern Recognition, and Graphics ; 12603
Subjects:
Online Access:https://doi.org/10.1007/978-3-030-67194-5
Summary:This book constitutes the First 3D Head and Neck Tumor Segmentation in PET/CT Challenge, HECKTOR 2020, which was held in conjunction with the 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in Lima, Peru, in October 2020. The challenge took place virtually due to the COVID-19 pandemic. The 2 full and 8 short papers presented together with an overview paper in this volume were carefully reviewed and selected form numerous submissions. This challenge aims to evaluate and compare the current state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 204 delineated PET/CT images was made available for training as well as 53 PET/CT images for testing. Various deep learning methods were developed by the participants with excellent results.
Physical Description:X, 109 p. 32 illus., 29 illus. in color. online resource.
ISBN:9783030671945