Handbook of immunoassay technologies : approaches, performances, and applications /

Handbook of Immunoassay Technologies: Approaches, Performances, and Applications unravels the role of immunoassays in the biochemical sciences. During the last four decades, a wide range of immunoassays has been developed, ranging from the conventional enzyme-linked immunosorbent assays, to the smar...

Full description

Other Authors: Vashist, Sandeep Kumar, (Editor), Luong, John, (Editor)
Language:English
Published: London : Academic Press, an imprint of Elsevier, [2018]
Subjects:
Online Access:ScienceDirect
ScienceDirect
Table of Contents:
  • Front Cover
  • Handbook of Immunoassay Technologies
  • Handbook of Immunoassay Technologies: Approaches, Performances, and Applications
  • Copyright
  • Contents
  • Contributors
  • Preface
  • OBJECTIVES OF THE BOOK
  • SCOPE OF THE BOOK
  • TARGET AUDIENCE
  • BOOK ORGANIZATION
  • 1
  • Immunoassays: An Overview
  • 1. OVERVIEW OF IMMUNOASSAYS
  • 2. ANTIBODY STRUCTURE
  • 3. NEED FOR IMMUNOASSAYS
  • 3.1 Clinical
  • 3.2 Industrial
  • 3.3 Environment and Security
  • 3.4 Food
  • 3.5 Personalized Healthcare
  • 4. IMMUNOASSAY FORMATS
  • 5. CONCLUSIONS AND FUTURE TRENDS
  • REFERENCES
  • 2
  • Antibody Immobilization and Surface Functionalization Chemistries for Immunodiagnostics
  • 1. INTRODUCTION
  • 2. SURFACE FUNCTIONALIZATION CHEMISTRIES
  • 2.1 Hydroxyl Groups
  • 2.2 Amino Groups
  • 2.3 Carboxyl Groups
  • 2.4 Sulfhydryl Groups
  • 2.5 Epoxy Groups
  • 3. ANTIBODY IMMOBILIZATION CHEMISTRIES
  • 3.1 Covalent
  • 3.2 Oriented
  • 3.3 Noncovalent
  • 3.3.1 Adsorption
  • 3.3.2 Affinity
  • 3.4 Site-Specific
  • 3.5 Peptide Nucleic Acid and Deoxyribonucleic Acid-Directed
  • 3.6 Recombinant Antibody
  • 4. SURFACE CHARACTERIZATION
  • 5. CONCLUSIONS, CHALLENGES, AND FUTURE TRENDS
  • REFERENCES
  • 3
  • Monoclonal Antibody Generation by Phage Display: History, State-of-the-Art, and Future
  • 1. INTRODUCTION
  • 1.1 History of the Development of Antibody Phage Display
  • 1.2 Antibody Formats Used for Phage Display
  • 1.3 Further Recombinant Antibody Formats
  • 2. PHAGE DISPLAY SELECTION
  • 2.1 Advantages of Recombinant Antibody Selection
  • 2.2 Guided Selection
  • 2.3 Affinity Improvement
  • 2.4 Other Selection Technologies
  • 3. ANTIBODY LIBRARIES
  • 3.1 Immune Libraries
  • 3.2 Naïve Natural Libraries
  • 3.3 Naïve Semisynthetic Libraries
  • 3.4 Naïve Synthetic Libraries
  • 3.5 Special Library Designs
  • 3.6 Synthetic Libraries From Nonhuman Species.
  • 4. IN VITRO SELECTION OF ANTIBODIES FOR SPECIFIC APPLICATIONS
  • 4.1 Tissue Panning for Immunohistochemistry Antibodies
  • 4.2 Sandwich Pair Selection, Complex-Specific Antibodies, and Drug Monitoring
  • 4.3 Fully Human Controls in Diagnostic Immunoassays
  • 4.4 Site-Specific Conjugation
  • 5. CONCLUSION AND OUTLOOK
  • 5.1 Future
  • REFERENCES
  • 4
  • Bioanalytical Requirements and Regulatory Guidelines for Immunoassays
  • 1. INTRODUCTION
  • 2. BIOANALYTICAL REQUIREMENTS FOR AN IMMUNOASSAY
  • 2.1 Accuracy
  • 2.2 Precision
  • 2.3 Selectivity
  • 2.4 Sensitivity
  • 2.5 Reproducibility
  • 2.6 Stability
  • 2.7 Recovery
  • 2.8 Calibration Curve
  • 2.9 Bioanalytical Performance Parameters
  • 2.9.1 Limit of Blank
  • 2.9.2 Limit of Detection
  • 2.9.3 Limit of Quantification
  • 2.9.4 Lower Limit of the Linear Interval
  • 2.9.5 Lower Limit of the Measuring Interval
  • 2.9.6 Errors
  • 2.9.7 Carryover
  • 2.9.8 Interference
  • 2.9.9 Quality Controls
  • 2.9.10 Linear Range
  • 2.9.11 Analytical Measurement Range
  • 2.9.12 Clinically Reportable Range
  • 2.9.13 Bias
  • 2.9.14 Hook Effect
  • 2.9.15 Method Comparison
  • 2.9.16 Cross-reactivity
  • 3. CRITIQUES AND OUTLOOK
  • 4. CONCLUSIONS
  • REFERENCES
  • 5
  • Enzyme-Linked Immunoassays
  • 1. INTRODUCTION
  • 2. CONVENTIONAL ENZYME-LINKED IMMUNOASSAYS
  • 2.1 Enzyme-Linked Immunosorbent Assay
  • 2.1.1 Direct Enzyme-Linked Immunosorbent Assay
  • 2.1.2 Indirect Enzyme-Linked Immunosorbent Assay
  • 2.1.3 Sandwich Enzyme-Linked Immunosorbent Assay
  • 2.2 Competitive Enzyme-Linked Immunoassay
  • 3. EMERGING ENZYME-LINKED IMMUNOASSAYS
  • 3.1 High-Sensitivity Sandwich Enzyme-Linked Immunoassay
  • 3.2 Highly Simplified Rapid Sandwich Enzyme-Linked Immunoassay
  • 3.3 Wash-Free Immunoassays
  • 3.4 Multiplex Immunoassays
  • 3.5 Nano/Micromaterial-Based Enzyme-Linked Immunoassay
  • 3.6 Paper-Based Enzyme-Linked Immunoassay.
  • 3.7 Microfluidics-Based Enzyme-Linked Immunoassay
  • 3.7.1 Optimiser Enzyme-Linked Immunosorbent Assay
  • 3.7.2 Centrifugal Microfluidics-Based Immunoassay
  • 3.8 Smartphone-Based Enzyme-Linked Immunoassay
  • 4. PORTABLE ANALYZER-BASED IMMUNOASSAYS
  • 5. CRITIQUES AND OUTLOOK
  • 6. CONCLUSIONS
  • REFERENCES
  • 6
  • Surface Plasmon Resonance-Based Immunoassays: Approaches, Performance, and Applications
  • 1. INTRODUCTION
  • 1.1 Surface Plasmon Resonance
  • 1.2 Surface Plasmon Resonance Principles
  • 1.3 Surface Plasmon Resonance-Based Biosensor Platforms
  • 2. SURFACE PLASMON RESONANCE-BASED IMMUNOASSAYS
  • 2.1 Antibody Introduction
  • 2.2 Antibody Screening Using Surface Plasmon Resonance
  • 2.3 Surface Plasmon Resonance Immunoassay Introduction
  • 2.3.1 Small Molecular Weight Targets
  • 2.3.2 Pathogens and Viruses
  • 2.3.3 Disease Targets
  • 3. FUTURE TRENDS IN SURFACE PLASMON RESONANCE-BASED IMMUNOASSAYS
  • 3.1 Surface Plasmon Resonance-Mass Spectrometry
  • 3.2 Surface Plasmon Resonance-Point-of-Care Applications
  • 3.2.1 CD-Based Surface Plasmon Resonance
  • 3.2.2 Mobile Phone-Surface Plasmon Resonance
  • 4. CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 7
  • Lateral Flow Immunoassays
  • 1. INTRODUCTION
  • 1.1 Lateral Flow Immunoassays
  • 1.1.1 History of the Technology
  • 1.1.2 Basic Technology
  • 1.1.3 Recognition Elements
  • 1.1.4 Signal Labels
  • 1.1.5 Storage of Lateral Flow Devices
  • 2. ADVANCES IN LATERAL FLOW IMMUNOASSAYS
  • 2.1 Coupling to a Range of Detection Principles
  • 2.2 Multianalyte and Quantitative Lateral Flow Immunoassays
  • 2.3 Reading MultiSpot Lateral Flow Assays
  • 2.3.1 Lateral Flow Reader for Microarrays
  • 2.3.2 Real-Time Video Reader
  • 2.3.3 Reading Arrays by a Smartphone Application
  • 3. CHALLENGES AND FUTURE DIRECTIONS
  • 3.1 Updated SWOT Analysis
  • 3.1.1 Weaknesses
  • 3.1.2 Opportunities
  • 3.1.3 Threats.
  • 3.2 Combination With Amplification Procedures
  • 3.3 Integration of Lateral Flow Immunoassays With Paper Diagnostics
  • 4. BIBLIOGRAPHIC AND COMMERCIAL DATA
  • 5. CONCLUSIONS
  • REFERENCES
  • 8
  • Paper-Based Immunoassays
  • 1. PAPER-BASED IMMUNOASSAYS: STRATEGIES AND DETECTION PRINCIPLES
  • 1.1 Colorimetric Method
  • 1.1.1 AuNPs
  • 1.1.2 Enzymes
  • 1.1.3 Carbon Nanoparticles
  • 1.1.4 Magnetic Nanoparticles
  • 1.2 Thermal Method
  • 1.3 Electrochemical Method
  • 1.4 Magnetic Method
  • 2. DEVELOPMENT OF THE PAPER-BASED IMMUNOASSAYS DEVICES
  • 2.1 Sensitivity Improvement
  • 2.2 Automatic Detections
  • 2.3 Semiquantification Detection and Quantification Detection
  • 3. CONCLUSIONS
  • REFERENCES
  • 9
  • Acoustic Wave-Based Immunoassays
  • 1. INTRODUCTION
  • 2. CLINICAL DIAGNOSTICS
  • 2.1 Quartz Crystal Microbalance Immunosensors
  • 2.1.1 Direct Immunosensors
  • 2.1.2 Indirect Immunosensors
  • 2.1.3 Sandwich-Amplified Immunosensors
  • 2.2 Surface Acoustic Wave Immunosensors
  • 2.2.1 Direct Immunosensors
  • 3. DETECTION OF MICROBIAL PATHOGENS AND TOXINS
  • 3.1 Quartz Crystal Microbalance Immunosensors
  • 3.1.1 Direct Immunosensors
  • 3.1.2 Indirect Immunosensors
  • 3.1.3 Sandwich-Amplified Immunosensors
  • 3.2 Surface Acoustic Wave Immunosensors
  • 3.2.1 Direct Immunosensors
  • 3.2.2 Sandwich-Amplified Immunosensors
  • 4. DETECTION OF PARASITES
  • 4.1 Quartz Crystal Microbalance Immunosensors
  • 4.1.1 Direct Immunosensors
  • 4.1.2 Indirect Immunosensors
  • 4.1.3 Sandwich-Amplified Immunosensors
  • 5. DETECTION OF VIRUSES
  • 5.1 Quartz Crystal Microbalance Immunosensors
  • 5.1.1 Direct Immunosensors
  • 5.1.2 Indirect Immunosensors
  • 5.1.3 Sandwich-Amplified Immunosensors
  • 5.2 Surface Acoustic Wave Immunosensors
  • 6. QUARTZ CRYSTAL MICROBALANCE AND SURFACE ACOUSTIC WAVE-BASED ELECTRONIC NOSES.
  • 7. QUARTZ CRYSTAL MICROBALANCE AND SURFACE ACOUSTIC WAVE IMMUNOASSAYS IN ENVIRONMENTAL MONITORING AND ALLERGENS DETECTION
  • 8. INTEGRATED ACOUSTIC WAVE IMMUNOSENSORS FOR POINT OF CARE
  • 9. COMMERCIAL ACOUSTIC WAVE IMMUNOSENSORS
  • 10. MARKET POTENTIAL AND CONCLUSIONS
  • ACKNOWLEDGMENTS
  • REFERENCES
  • 10
  • Interferometry-Based Immunoassays
  • 1. INTRODUCTION: GENERAL CONTEXT
  • 2. PRINCIPLES OF OPERATION
  • 2.1 Label-Free Optical Sensing
  • 2.2 Interferometric Sensors
  • 3. SENSOR SURFACE FUNCTIONALIZATION
  • 3.1 Chemical Activation of Transducers
  • 3.2 Immobilization of Recognition Molecules
  • 3.3 Elimination of Nonspecific Binding
  • 4. APPLICATION OF INTERFEROMETRIC IMMUNOSENSORS
  • 4.1 Mach-Zehnder Interferometers
  • 4.2 Young Interferometers
  • 4.3 Bimodal Interferometers
  • 5. CONCLUSIONS AND FUTURE PERSPECTIVES
  • REFERENCES
  • 11
  • Nanomaterial- and Micromaterial-Based Immunoassays
  • 1. INTRODUCTION
  • 2. MICROMATERIAL-BASED IMMUNOASSAY
  • 2.1 Fluorescent Polystyrene Microsphere
  • 2.2 Magnetic Microbeads
  • 2.3 Nanomaterial-Based Immunoassay
  • 3. COLORIMETRIC IMMUNOASSAY
  • 3.1 Lateral Flow Assay
  • 3.2 Plate-Based Colorimetric Immunoassay
  • 4. ELECTROCHEMICAL IMMUNOASSAY
  • 5. FLUORESCENT IMMUNOASSAY
  • 5.1 Heterogeneous Immunoassay
  • 5.2 Fluorescence Resonance Energy Transfer Assay
  • 6. CONCLUSION
  • REFERENCES
  • 12
  • Microcantilever-Based Sensors
  • 1. INTRODUCTION
  • 2. MICROCANTILEVERS AND THEIR MODES OF OPERATION
  • 2.1 Operating Modes for Cantilever Mass Sensors
  • 3. DETECTION METHODS
  • 3.1 Optical
  • 3.2 Piezoresistive
  • 3.3 Capacitive
  • 3.4 Piezoelectric
  • 3.5 Interferometry
  • 3.6 Optical Diffraction Grating
  • 3.7 Charge-Coupled Device
  • 4. BENDING BEHAVIOR OF MICROCANTILEVERS
  • 5. FABRICATION OF MICROCANTILEVERS
  • 6. MICROCANTILEVER-BASED SENSORS
  • 6.1 Detection of Biomolecules
  • 6.1.1 DNA.