Grammar-Based Feature Generation for Time-Series Prediction

This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounde...

Full description

Main Authors: De Silva, Anthony Mihirana. (Author, http://id.loc.gov/vocabulary/relators/aut), Leong, Philip H. W. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Computational Intelligence,
Subjects:
Online Access:https://doi.org/10.1007/978-981-287-411-5
LEADER 03617nam a22005175i 4500
001 978-981-287-411-5
003 DE-He213
005 20210618032828.0
007 cr nn 008mamaa
008 150214s2015 si | s |||| 0|eng d
020 |a 9789812874115  |9 978-981-287-411-5 
024 7 |a 10.1007/978-981-287-411-5  |2 doi 
050 4 |a Q342 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a De Silva, Anthony Mihirana.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Grammar-Based Feature Generation for Time-Series Prediction  |h [electronic resource] /  |c by Anthony Mihirana De Silva, Philip H. W. Leong. 
250 |a 1st ed. 2015. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2015. 
300 |a XI, 99 p. 28 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
505 0 |a Introduction -- Feature Selection -- Grammatical Evolution -- Grammar Based Feature Generation -- Application of Grammar Framework to Time-series Prediction -- Case Studies -- Conclusion. 
520 |a This book proposes a novel approach for time-series prediction using machine learning techniques with automatic feature generation. Application of machine learning techniques to predict time-series continues to attract considerable attention due to the difficulty of the prediction problems compounded by the non-linear and non-stationary nature of the real world time-series. The performance of machine learning techniques, among other things, depends on suitable engineering of features. This book proposes a systematic way for generating suitable features using context-free grammar. A number of feature selection criteria are investigated and a hybrid feature generation and selection algorithm using grammatical evolution is proposed. The book contains graphical illustrations to explain the feature generation process. The proposed approaches are demonstrated by predicting the closing price of major stock market indices, peak electricity load and net hourly foreign exchange client trade volume. The proposed method can be applied to a wide range of machine learning architectures and applications to represent complex feature dependencies explicitly when machine learning cannot achieve this by itself. Industrial applications can use the proposed technique to improve their predictions. 
650 0 |a Computational intelligence. 
650 0 |a Pattern recognition. 
650 0 |a Economics, Mathematical . 
650 1 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Quantitative Finance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13062 
700 1 |a Leong, Philip H. W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789812874122 
776 0 8 |i Printed edition:  |z 9789812874108 
830 0 |a SpringerBriefs in Computational Intelligence,  |x 2625-3704 
856 4 0 |u https://doi.org/10.1007/978-981-287-411-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)