|
|
|
|
LEADER |
03176nam a22005055i 4500 |
001 |
978-981-15-4867-3 |
003 |
DE-He213 |
005 |
20210620093711.0 |
007 |
cr nn 008mamaa |
008 |
200831s2020 si | s |||| 0|eng d |
020 |
|
|
|a 9789811548673
|9 978-981-15-4867-3
|
024 |
7 |
|
|a 10.1007/978-981-15-4867-3
|2 doi
|
050 |
|
4 |
|a TA1630-1650
|
072 |
|
7 |
|a UYT
|2 bicssc
|
072 |
|
7 |
|a COM012000
|2 bisacsh
|
072 |
|
7 |
|a UYT
|2 thema
|
072 |
|
7 |
|a UYQV
|2 thema
|
082 |
0 |
4 |
|a 006.6
|2 23
|
082 |
0 |
4 |
|a 006.37
|2 23
|
100 |
1 |
|
|a Xiao, Gang.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
245 |
1 |
0 |
|a Image Fusion
|h [electronic resource] /
|c by Gang Xiao, Durga Prasad Bavirisetti, Gang Liu, Xingchen Zhang.
|
250 |
|
|
|a 1st ed. 2020.
|
264 |
|
1 |
|a Singapore :
|b Springer Singapore :
|b Imprint: Springer,
|c 2020.
|
300 |
|
|
|a XVIII, 404 p. 231 illus., 76 illus. in color.
|b online resource.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|b PDF
|2 rda
|
505 |
0 |
|
|a Preface -- Author introduction -- Acknowledgement -- Part I: Image Fusion Theories -- Chapter 1: Introduction to Image Fusion -- Chapter 2: Pixel-level Image Fusion -- Chapter 3: Feature-level Image Fusion -- Chapter 4: Decision-level Image Fusion -- Chapter 5: Multi-sensor Dynamic Image Fusion -- Chapter 6: Objective Fusion Metrics -- Chapter 7: Image Fusion Based on Machine Learning and Deep Learning -- Part II: Experimental Examples -- Chapter 8: Example 1: Medical Image Fusion -- Chapter 9: Example 2: Night Vision image Fusion -- Chapter 10: Simulation Platform of Image Fusion.
|
520 |
|
|
|a This book systematically discusses the basic concepts, theories, research and latest trends in image fusion. It focuses on three image fusion categories – pixel, feature and decision – presenting various applications, such as medical imaging, remote sensing, night vision, robotics and autonomous vehicles. Further, it introduces readers to a new category: edge-preserving-based image fusion, and provides an overview of image fusion based on machine learning and deep learning. As such, it is a valuable resource for graduate students and scientists in the field of digital image processing and information fusion.
|
650 |
|
0 |
|a Optical data processing.
|
650 |
1 |
4 |
|a Image Processing and Computer Vision.
|0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021
|
700 |
1 |
|
|a Bavirisetti, Durga Prasad.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Liu, Gang.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
700 |
1 |
|
|a Zhang, Xingchen.
|e author.
|4 aut
|4 http://id.loc.gov/vocabulary/relators/aut
|
710 |
2 |
|
|a SpringerLink (Online service)
|
773 |
0 |
|
|t Springer Nature eBook
|
776 |
0 |
8 |
|i Printed edition:
|z 9789811548666
|
776 |
0 |
8 |
|i Printed edition:
|z 9789811548680
|
776 |
0 |
8 |
|i Printed edition:
|z 9789811548697
|
856 |
4 |
0 |
|u https://doi.org/10.1007/978-981-15-4867-3
|
912 |
|
|
|a ZDB-2-SCS
|
912 |
|
|
|a ZDB-2-SXCS
|
950 |
|
|
|a Computer Science (SpringerNature-11645)
|
950 |
|
|
|a Computer Science (R0) (SpringerNature-43710)
|