Feature Engineering and Computational Intelligence in ECG Monitoring

This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doi...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Liu, Chengyu. (Editor, http://id.loc.gov/vocabulary/relators/edt), Li, Jianqing. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Subjects:
Online Access:https://doi.org/10.1007/978-981-15-3824-7
LEADER 04032nam a22005055i 4500
001 978-981-15-3824-7
003 DE-He213
005 20210626202736.0
007 cr nn 008mamaa
008 200624s2020 si | s |||| 0|eng d
020 |a 9789811538247  |9 978-981-15-3824-7 
024 7 |a 10.1007/978-981-15-3824-7  |2 doi 
050 4 |a R856-R857 
072 7 |a MQW  |2 bicssc 
072 7 |a MED003040  |2 bisacsh 
072 7 |a MQW  |2 thema 
082 0 4 |a 610.28  |2 23 
245 1 0 |a Feature Engineering and Computational Intelligence in ECG Monitoring  |h [electronic resource] /  |c edited by Chengyu Liu, Jianqing Li. 
250 |a 1st ed. 2020. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2020. 
300 |a X, 268 p. 101 illus., 77 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Feature engineering and computational intelligence in ECG monitoring – an introduction -- Chapter 2. Representative Databases for Feature Engineering and Computational Intelligence in ECG Processing -- Chapter 3. An Overview of signal quality indices on dynamic ECG signal quality assessment -- Chapter 4. Signal quality features in dynamic ECGs -- Chapter 5. Motion Artifact Suppression Method in Wearable ECG -- Chapter 6. Data Augmentation for Deep Learning based ECG analysis -- Chapter 7. Study on Automatic Classification of Arrhythmias -- Chapter 8. ECG Interpretation with deep learning -- Chapter 9. Visualizing ECG contribution into Convolutional Neural Network classification -- Chapter 10. Atrial fibrillation detection in dynamic signals -- Chapter 11. Applications of Heart rate variability in Sleep Apnea -- Chapter 12. False Alarm Rejection for ICU ECG Monitoring -- Chapter 13. Respiratory Signal Extraction from ECG Signal -- Chapter 14. Noninvasive Recording of Cardiac Autonomic Nervous Activity--What’s behind ECG? -- Chapter 15. A questionnaire study on artificial intelligence and its effects on individual health and wearable device. 
520 |a This book discusses feature engineering and computational intelligence solutions for ECG monitoring, with a particular focus on how these methods can be efficiently used to address the emerging challenges of dynamic, continuous & long-term individual ECG monitoring and real-time feedback. By doing so, it provides a “snapshot” of the current research at the interface between physiological signal analysis and machine learning. It also helps clarify a number of dilemmas and encourages further investigations in this field, to explore rational applications of feature engineering and computational intelligence in ECG monitoring. The book is intended for researchers and graduate students in the field of biomedical engineering, ECG signal processing, and intelligent healthcare. 
650 0 |a Biomedical engineering. 
650 0 |a Computational intelligence. 
650 0 |a Bioinformatics. 
650 1 4 |a Biomedical Engineering/Biotechnology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/B24000 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L15001 
700 1 |a Liu, Chengyu.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Li, Jianqing.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811538230 
776 0 8 |i Printed edition:  |z 9789811538254 
776 0 8 |i Printed edition:  |z 9789811538261 
856 4 0 |u https://doi.org/10.1007/978-981-15-3824-7 
912 |a ZDB-2-SBL 
912 |a ZDB-2-SXB 
950 |a Biomedical and Life Sciences (SpringerNature-11642) 
950 |a Biomedical and Life Sciences (R0) (SpringerNature-43708)