Accelerated Optimization for Machine Learning First-Order Algorithms /

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimizat...

Full description

Main Authors: Lin, Zhouchen. (Author, http://id.loc.gov/vocabulary/relators/aut), Li, Huan. (http://id.loc.gov/vocabulary/relators/aut), Fang, Cong. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2020.
Edition:1st ed. 2020.
Subjects:
Online Access:https://doi.org/10.1007/978-981-15-2910-8
LEADER 03861nam a22005535i 4500
001 978-981-15-2910-8
003 DE-He213
005 20210622020320.0
007 cr nn 008mamaa
008 200529s2020 si | s |||| 0|eng d
020 |a 9789811529108  |9 978-981-15-2910-8 
024 7 |a 10.1007/978-981-15-2910-8  |2 doi 
050 4 |a Q325.5-.7 
050 4 |a TK7882.P3 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
082 0 4 |a 006.31  |2 23 
100 1 |a Lin, Zhouchen.  |e author.  |0 (orcid)0000-0003-1493-7569  |1 https://orcid.org/0000-0003-1493-7569  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Accelerated Optimization for Machine Learning   |h [electronic resource] :  |b First-Order Algorithms /  |c by Zhouchen Lin, Huan Li, Cong Fang. 
250 |a 1st ed. 2020. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2020. 
300 |a XXIV, 275 p. 36 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Introduction -- Chapter 2. Accelerated Algorithms for Unconstrained Convex Optimization -- Chapter 3. Accelerated Algorithms for Constrained Convex Optimization -- Chapter 4. Accelerated Algorithms for Nonconvex Optimization -- Chapter 5. Accelerated Stochastic Algorithms -- Chapter 6. Accelerated Paralleling Algorithms -- Chapter 7. Conclusions.-. 
520 |a This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning. Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. 
650 0 |a Machine learning. 
650 0 |a Mathematical optimization. 
650 0 |a Computer science—Mathematics. 
650 0 |a Computer mathematics. 
650 1 4 |a Machine Learning.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21010 
650 2 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
650 2 4 |a Math Applications in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17044 
650 2 4 |a Computational Mathematics and Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 
700 1 |a Li, Huan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Fang, Cong.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811529092 
776 0 8 |i Printed edition:  |z 9789811529115 
776 0 8 |i Printed edition:  |z 9789811529122 
856 4 0 |u https://doi.org/10.1007/978-981-15-2910-8 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)