From Extractive to Abstractive Summarization: A Journey

This book describes recent advances in text summarization, identifies remaining gaps and challenges, and proposes ways to overcome them. It begins with one of the most frequently discussed topics in text summarization – ‘sentence extraction’ –, examines the effectiveness of current techniques in dom...

Full description

Main Authors: Mehta, Parth. (Author, http://id.loc.gov/vocabulary/relators/aut), Majumder, Prasenjit. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Subjects:
Online Access:https://doi.org/10.1007/978-981-13-8934-4
LEADER 04010nam a22005295i 4500
001 978-981-13-8934-4
003 DE-He213
005 20210619104736.0
007 cr nn 008mamaa
008 190813s2019 si | s |||| 0|eng d
020 |a 9789811389344  |9 978-981-13-8934-4 
024 7 |a 10.1007/978-981-13-8934-4  |2 doi 
050 4 |a QA76.76.R44 
050 4 |a TK5105.5956 
072 7 |a UYD  |2 bicssc 
072 7 |a COM067000  |2 bisacsh 
072 7 |a UYD  |2 thema 
072 7 |a UKR  |2 thema 
082 0 4 |a 004.24  |2 23 
100 1 |a Mehta, Parth.  |e author.  |0 (orcid)0000-0002-4509-1298  |1 https://orcid.org/0000-0002-4509-1298  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Extractive to Abstractive Summarization: A Journey  |h [electronic resource] /  |c by Parth Mehta, Prasenjit Majumder. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XI, 116 p. 470 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction.-Related Work -- Corpora and Evaluation for Text Summarization -- Domain Specific Summarization -- Improving sentence extraction through rank aggregation -- Leveraging content similarity in summaries for generating better ensembles.-Neural model for sentence compression -- Conclusion. 
520 |a This book describes recent advances in text summarization, identifies remaining gaps and challenges, and proposes ways to overcome them. It begins with one of the most frequently discussed topics in text summarization – ‘sentence extraction’ –, examines the effectiveness of current techniques in domain-specific text summarization, and proposes several improvements. In turn, the book describes the application of summarization in the legal and scientific domains, describing two new corpora that consist of more than 100 thousand court judgments and more than 20 thousand scientific articles, with the corresponding manually written summaries. The availability of these large-scale corpora opens up the possibility of using the now popular data-driven approaches based on deep learning. The book then highlights the effectiveness of neural sentence extraction approaches, which perform just as well as rule-based approaches, but without the need for any manual annotation. As a next step, multiple techniques for creating ensembles of sentence extractors – which deliver better and more robust summaries – are proposed. In closing, the book presents a neural network-based model for sentence compression. Overall the book takes readers on a journey that begins with simple sentence extraction and ends in abstractive summarization, while also covering key topics like ensemble techniques and domain-specific summarization, which have not been explored in detail prior to this. 
650 0 |a Computer software—Reusability. 
650 0 |a Computer communication systems. 
650 0 |a Application software. 
650 1 4 |a Performance and Reliability.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I12077 
650 2 4 |a Computer Communication Networks.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I13022 
650 2 4 |a Information Systems Applications (incl. Internet).  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18040 
700 1 |a Majumder, Prasenjit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811389337 
776 0 8 |i Printed edition:  |z 9789811389351 
776 0 8 |i Printed edition:  |z 9789811389368 
856 4 0 |u https://doi.org/10.1007/978-981-13-8934-4 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)