Deep Learning with R

Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning....

Full description

Main Author: Ghatak, Abhijit. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Subjects:
Online Access:https://doi.org/10.1007/978-981-13-5850-0
LEADER 03443nam a22005175i 4500
001 978-981-13-5850-0
003 DE-He213
005 20210619130735.0
007 cr nn 008mamaa
008 190413s2019 si | s |||| 0|eng d
020 |a 9789811358500  |9 978-981-13-5850-0 
024 7 |a 10.1007/978-981-13-5850-0  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Ghatak, Abhijit.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Deep Learning with R  |h [electronic resource] /  |c by Abhijit Ghatak. 
250 |a 1st ed. 2019. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2019. 
300 |a XXIII, 245 p. 100 illus., 83 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a  Introduction to Machine Learning -- Introduction to Neural Networks -- Deep Neural Networks – I -- Initialization of Network Parameters -- Optimization -- Deep Neural Networks - II -- Convolutional Neural Networks (ConvNets) -- Recurrent Neural Networks (RNN) or Sequence Models -- Epilogue. 
520 |a Deep Learning with R introduces deep learning and neural networks using the R programming language. The book builds on the understanding of the theoretical and mathematical constructs and enables the reader to create applications on computer vision, natural language processing and transfer learning. The book starts with an introduction to machine learning and moves on to describe the basic architecture, different activation functions, forward propagation, cross-entropy loss and backward propagation of a simple neural network. It goes on to create different code segments to construct deep neural networks. It discusses in detail the initialization of network parameters, optimization techniques, and some of the common issues surrounding neural networks such as dealing with NaNs and the vanishing/exploding gradient problem. Advanced variants of multilayered perceptrons namely, convolutional neural networks and sequence models are explained, followed by application to different use cases. The book makes extensive use of the Keras and TensorFlow frameworks. . 
650 0 |a Artificial intelligence. 
650 0 |a Computer science—Mathematics. 
650 0 |a Computer programming. 
650 0 |a Statistics . 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Mathematics of Computing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17001 
650 2 4 |a Programming Techniques.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I14010 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811358494 
776 0 8 |i Printed edition:  |z 9789811358517 
776 0 8 |i Printed edition:  |z 9789811370892 
856 4 0 |u https://doi.org/10.1007/978-981-13-5850-0 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)