Electronic Nose: Algorithmic Challenges

This book presents the key technology of electronic noses, and systematically describes how e-noses can be used to automatically analyse odours. Appealing to readers from the fields of artificial intelligence, computer science, electrical engineering, electronics, and instrumentation science, it add...

Full description

Main Authors: Zhang, Lei. (Author, http://id.loc.gov/vocabulary/relators/aut), Tian, Fengchun. (http://id.loc.gov/vocabulary/relators/aut), Zhang, David. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2018.
Edition:1st ed. 2018.
Subjects:
Online Access:https://doi.org/10.1007/978-981-13-2167-2
LEADER 04261nam a22005535i 4500
001 978-981-13-2167-2
003 DE-He213
005 20210618235047.0
007 cr nn 008mamaa
008 180911s2018 si | s |||| 0|eng d
020 |a 9789811321672  |9 978-981-13-2167-2 
024 7 |a 10.1007/978-981-13-2167-2  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Zhang, Lei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Electronic Nose: Algorithmic Challenges  |h [electronic resource] /  |c by Lei Zhang, Fengchun Tian, David Zhang. 
250 |a 1st ed. 2018. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2018. 
300 |a XV, 339 p. 89 illus., 70 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part 1 : Overview -- Chapter 1. Introduction -- Chapter 2. Literature Review -- Part 2 : E-nose Odor Recognition and Prediction: Challenge I -- Chapter 3. Heuristic and Bio-inspired Neural Network Model -- Chpater 4. Chaos based Neural Network Optimization Approach -- Chapter 5. Multilayer Perceptrons based Concentration Estimation, etc. 
520 |a This book presents the key technology of electronic noses, and systematically describes how e-noses can be used to automatically analyse odours. Appealing to readers from the fields of artificial intelligence, computer science, electrical engineering, electronics, and instrumentation science, it addresses three main areas: First, readers will learn how to apply machine learning, pattern recognition and signal processing algorithms to real perception tasks. Second, they will be shown how to make their algorithms match their systems once the algorithms don’t work because of the limitation of hardware resources. Third, readers will learn how to make schemes and solutions when the acquired data from their systems is not stable due to the fundamental issues affecting perceptron devices (e.g. sensors). In brief, the book presents and discusses the key technologies and new algorithmic challenges in electronic noses and artificial olfaction. The goal is to promote the industrial application of electronic nose technology in environmental detection, medical diagnosis, food quality control, explosive detection, etc. and to highlight the scientific advances in artificial olfaction and artificial intelligence. The book offers a good reference guide for newcomers to the topic of electronic noses, because it refers to the basic principles and algorithms. At the same time, it clearly presents the key challenges – such as long-term drift, signal uniqueness, and disturbance – and effective and efficient solutions, making it equally valuable for researchers engaged in the science and engineering of sensors, instruments, chemometrics, etc. 
650 0 |a Pattern recognition. 
650 0 |a Biometrics (Biology). 
650 0 |a Bioinformatics. 
650 0 |a Health informatics. 
650 1 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Biometrics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22040 
650 2 4 |a Computational Biology/Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23050 
650 2 4 |a Health Informatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23060 
700 1 |a Tian, Fengchun.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Zhang, David.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811321665 
776 0 8 |i Printed edition:  |z 9789811321689 
776 0 8 |i Printed edition:  |z 9789811347412 
856 4 0 |u https://doi.org/10.1007/978-981-13-2167-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)