Bayesian Optimization for Materials Science

This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian...

Full description

Main Author: Packwood, Daniel. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:SpringerBriefs in the Mathematics of Materials, 3
Subjects:
Online Access:https://doi.org/10.1007/978-981-10-6781-5
LEADER 03692nam a22005295i 4500
001 978-981-10-6781-5
003 DE-He213
005 20210618195717.0
007 cr nn 008mamaa
008 171004s2017 si | s |||| 0|eng d
020 |a 9789811067815  |9 978-981-10-6781-5 
024 7 |a 10.1007/978-981-10-6781-5  |2 doi 
050 4 |a TA401-492 
050 4 |a QC72-QC73.8 
072 7 |a TGM  |2 bicssc 
072 7 |a TEC021000  |2 bisacsh 
072 7 |a TGM  |2 thema 
082 0 4 |a 620.11  |2 23 
100 1 |a Packwood, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Bayesian Optimization for Materials Science  |h [electronic resource] /  |c by Daniel Packwood. 
250 |a 1st ed. 2017. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2017. 
300 |a VIII, 42 p. 16 illus., 12 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 3 
505 0 |a Chapter 1. Overview of Bayesian optimization in materials science -- Chapter 2. Theory of Bayesian optimization -- Chapter 3. Bayesian optimization of molecules adsorbed to metal surfaces. 
520 |a This book provides a short and concise introduction to Bayesian optimization specifically for experimental and computational materials scientists. After explaining the basic idea behind Bayesian optimization and some applications to materials science in Chapter 1, the mathematical theory of Bayesian optimization is outlined in Chapter 2. Finally, Chapter 3 discusses an application of Bayesian optimization to a complicated structure optimization problem in computational surface science. Bayesian optimization is a promising global optimization technique that originates in the field of machine learning and is starting to gain attention in materials science. For the purpose of materials design, Bayesian optimization can be used to predict new materials with novel properties without extensive screening of candidate materials. For the purpose of computational materials science, Bayesian optimization can be incorporated into first-principles calculations to perform efficient, global structure optimizations. While research in these directions has been reported in high-profile journals, until now there has been no textbook aimed specifically at materials scientists who wish to incorporate Bayesian optimization into their own research. This book will be accessible to researchers and students in materials science who have a basic background in calculus and linear algebra. 
650 0 |a Materials science. 
650 0 |a Force and energy. 
650 0 |a Statistics . 
650 0 |a Statistical physics. 
650 1 4 |a Energy Materials.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/Z21000 
650 2 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Statistical Physics and Dynamical Systems.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19090 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811067808 
776 0 8 |i Printed edition:  |z 9789811067822 
830 0 |a SpringerBriefs in the Mathematics of Materials,  |x 2365-6336 ;  |v 3 
856 4 0 |u https://doi.org/10.1007/978-981-10-6781-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)