Integral Points on Algebraic Varieties An Introduction to Diophantine Geometry /

This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geome...

Full description

Main Author: Corvaja, Pietro. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:IMSc Lecture Notes in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-981-10-2648-5
LEADER 02900nam a22005055i 4500
001 978-981-10-2648-5
003 DE-He213
005 20210619005436.0
007 cr nn 008mamaa
008 161122s2016 si | s |||| 0|eng d
020 |a 9789811026485  |9 978-981-10-2648-5 
024 7 |a 10.1007/978-981-10-2648-5  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Corvaja, Pietro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Integral Points on Algebraic Varieties  |h [electronic resource] :  |b An Introduction to Diophantine Geometry /  |c by Pietro Corvaja. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a IX, 75 p. 1 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a IMSc Lecture Notes in Mathematics,  |x 2509-808X 
505 0 |a Chapter 1. Integral points on algebraic varieties -- Chapter 2. Diophantine approximation -- Chapter 3. The theorems of Thue and Siegel -- Chapter 4. Hilbert Irreducibility Theorem -- Chapter 5. Integral points on surfaces. 
520 |a This book is intended to be an introduction to Diophantine geometry. The central theme of the book is to investigate the distribution of integral points on algebraic varieties. This text rapidly introduces problems in Diophantine geometry, especially those involving integral points, assuming a geometrical perspective. It presents recent results not available in textbooks and also new viewpoints on classical material. In some instances, proofs have been replaced by a detailed analysis of particular cases, referring to the quoted papers for complete proofs. A central role is played by Siegel’s finiteness theorem for integral points on curves. The book ends with the analysis of integral points on surfaces. 
650 0 |a Algebra. 
650 0 |a Integral equations. 
650 0 |a Geometry. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Integral Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12090 
650 2 4 |a Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811026478 
776 0 8 |i Printed edition:  |z 9789811026492 
830 0 |a IMSc Lecture Notes in Mathematics,  |x 2509-808X 
856 4 0 |u https://doi.org/10.1007/978-981-10-2648-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)