Matrix-Based Introduction to Multivariate Data Analysis

This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The...

Full description

Main Author: Adachi, Kohei. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-981-10-2341-5
LEADER 04908nam a22005175i 4500
001 978-981-10-2341-5
003 DE-He213
005 20210620012305.0
007 cr nn 008mamaa
008 161011s2016 si | s |||| 0|eng d
020 |a 9789811023415  |9 978-981-10-2341-5 
024 7 |a 10.1007/978-981-10-2341-5  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Adachi, Kohei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Matrix-Based Introduction to Multivariate Data Analysis  |h [electronic resource] /  |c by Kohei Adachi. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XIII, 301 p. 55 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Part 1. Elementary Statistics with Matrices -- 1 Introduction to Matrix Operations -- 2 Intra-variable Statistics -- 3 Inter-variable Statistics -- Part 2. Least Squares Procedures -- 4 Regression Analysis -- 5 Principal Component Analysis (Part 1) -- 6 Principal Component Analysis 2 (Part 2) -- 7 Cluster Analysis -- Part 3. Maximum Likelihood Procedures -- 8 Maximum Likelihood and Normal Distributions -- 9 Path Analysis -- 10 Confirmatory Factor Analysis -- 11 Structural Equation Modeling -- 12 Exploratory Factor Analysis -- Part 4. Miscellaneous Procedures -- 13 Rotation Techniques -- 14 Canonical Correlation and Multiple Correspondence Analyses -- 15 Discriminant Analysis -- 16 Multidimensional Scaling -- Appendices -- A1 Geometric Understanding of Matrices and Vectors -- A2 Decomposition of Sums of Squares -- A3 Singular Value Decomposition (SVD) -- A4 Matrix Computation Using SVD -- A5 Supplements for Probability Densities and Likelihoods -- A6 Iterative Algorithms -- References -- Index. 
520 |a This book enables readers who may not be familiar with matrices to understand a variety of multivariate analysis procedures in matrix forms. Another feature of the book is that it emphasizes what model underlies a procedure and what objective function is optimized for fitting the model to data. The author believes that the matrix-based learning of such models and objective functions is the fastest way to comprehend multivariate data analysis. The text is arranged so that readers can intuitively capture the purposes for which multivariate analysis procedures are utilized: plain explanations of the purposes with numerical examples precede mathematical descriptions in almost every chapter. This volume is appropriate for undergraduate students who already have studied introductory statistics. Graduate students and researchers who are not familiar with matrix-intensive formulations of multivariate data analysis will also find the book useful, as it is based on modern matrix formulations with a special emphasis on singular value decomposition among theorems in matrix algebra. The book begins with an explanation of fundamental matrix operations and the matrix expressions of elementary statistics, followed by the introduction of popular multivariate procedures with advancing levels of matrix algebra chapter by chapter. This organization of the book allows readers without knowledge of matrices to deepen their understanding of multivariate data analysis. 
650 0 |a Statistics . 
650 0 |a Mathematical statistics. 
650 1 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17020 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17040 
650 2 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17010 
650 2 4 |a Probability and Statistics in Computer Science.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17036 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811023408 
776 0 8 |i Printed edition:  |z 9789811023422 
776 0 8 |i Printed edition:  |z 9789811095955 
856 4 0 |u https://doi.org/10.1007/978-981-10-2341-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)