Complex Surveys Analysis of Categorical Data /

The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is...

Full description

Main Author: Mukhopadhyay, Parimal. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Singapore : Springer Singapore : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-981-10-0871-9
LEADER 03974nam a22004815i 4500
001 978-981-10-0871-9
003 DE-He213
005 20210619050750.0
007 cr nn 008mamaa
008 160521s2016 si | s |||| 0|eng d
020 |a 9789811008719  |9 978-981-10-0871-9 
024 7 |a 10.1007/978-981-10-0871-9  |2 doi 
050 4 |a QA276-280 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
082 0 4 |a 519.5  |2 23 
100 1 |a Mukhopadhyay, Parimal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Complex Surveys  |h [electronic resource] :  |b Analysis of Categorical Data /  |c by Parimal Mukhopadhyay. 
250 |a 1st ed. 2016. 
264 1 |a Singapore :  |b Springer Singapore :  |b Imprint: Springer,  |c 2016. 
300 |a XV, 248 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Preliminaries -- Chapter 2. The Design-Effects and Mis-Specification Effects -- Chapter 3. Some Classical Models in Categorical Data Analysis -- Chapter 4. Analysis of Categorical Data under a Full Model -- Chapter 5. Analysis of Categorical Data under Log-Linear Models -- Chapter 6. Analysis of Categorical Data under Logistic Regression Model -- Chapter 7. Analysis in the Presence of Classification Errors -- Chapter 8. Approximate MLE’s from Survey Data. 
520 |a The primary objective of this book is to study some of the research topics in the area of analysis of complex surveys which have not been covered in any book yet. It discusses the analysis of categorical data using three models: a full model, a log-linear model and a logistic regression model. It is a valuable resource for survey statisticians and practitioners in the field of sociology, biology, economics, psychology and other areas who have to use these procedures in their day-to-day work. It is also useful for courses on sampling and complex surveys at the upper-undergraduate and graduate levels. The importance of sample surveys today cannot be overstated. From voters’ behaviour to fields such as industry, agriculture, economics, sociology, psychology, investigators generally resort to survey sampling to obtain an assessment of the behaviour of the population they are interested in. Many large-scale sample surveys collect data using complex survey designs like multistage stratified cluster designs. The observations using these complex designs are not independently and identically distributed – an assumption on which the classical procedures of inference are based. This means that if classical tests are used for the analysis of such data, the inferences obtained will be inconsistent and often invalid. For this reason, many modified test procedures have been developed for this purpose over the last few decades. 
650 0 |a Statistics . 
650 1 4 |a Statistical Theory and Methods.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S11001 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17010 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17030 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17040 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789811008702 
776 0 8 |i Printed edition:  |z 9789811008726 
776 0 8 |i Printed edition:  |z 9789811092725 
856 4 0 |u https://doi.org/10.1007/978-981-10-0871-9 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)