Lyapunov Exponents of Linear Cocycles Continuity via Large Deviations /

The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropr...

Full description

Main Authors: Duarte, Pedro. (Author, http://id.loc.gov/vocabulary/relators/aut), Klein, Silvius. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Paris : Atlantis Press : Imprint: Atlantis Press, 2016.
Edition:1st ed. 2016.
Series:Atlantis Studies in Dynamical Systems ; 3
Subjects:
Online Access:https://doi.org/10.2991/978-94-6239-124-6
LEADER 03060nam a22005175i 4500
001 978-94-6239-124-6
003 DE-He213
005 20210617123829.0
007 cr nn 008mamaa
008 160321s2016 fr | s |||| 0|eng d
020 |a 9789462391246  |9 978-94-6239-124-6 
024 7 |a 10.2991/978-94-6239-124-6  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Duarte, Pedro.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Lyapunov Exponents of Linear Cocycles  |h [electronic resource] :  |b Continuity via Large Deviations /  |c by Pedro Duarte, Silvius Klein. 
250 |a 1st ed. 2016. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2016. 
300 |a XIII, 263 p. 4 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Studies in Dynamical Systems ;  |v 3 
505 0 |a Introduction -- Estimates on Grassmann Manifolds -- Abstract Continuity of Lyapunov Exponents -- The Oseledets Filtration and Decomposition -- Large Deviations for Random Cocycles -- Large Deviations for Quasi-Periodic Cocycles -- Further Related Problems. 
520 |a The aim of this monograph is to present a general method of proving continuity of Lyapunov exponents of linear cocycles. The method uses an inductive procedure based on a general, geometric version of the Avalanche Principle. The main assumption required by this method is the availability of appropriate large deviation type estimates for quantities related to the iterates of the base and fiber dynamics associated with the linear cocycle. We establish such estimates for various models of random and quasi-periodic cocycles. Our method has its origins in a paper of M. Goldstein and W. Schlag. Our present work expands upon their approach in both depth and breadth. We conclude this monograph with a list of related open problems, some of which may be treated using a similar approach. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Mathematical physics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
700 1 |a Klein, Silvius.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789462391239 
776 0 8 |i Printed edition:  |z 9789462391253 
830 0 |a Atlantis Studies in Dynamical Systems ;  |v 3 
856 4 0 |u https://doi.org/10.2991/978-94-6239-124-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)