Differential Equations with Involutions

This monograph covers the existing results regarding Green’s functions for differential equations with involutions (DEI).The first part of the book is devoted to the study of the most useful aspects of involutions from an analytical point of view and the associated algebras of differential operators...

Full description

Main Authors: Cabada, Alberto. (Author, http://id.loc.gov/vocabulary/relators/aut), F. Tojo, F. Adrián. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Paris : Atlantis Press : Imprint: Atlantis Press, 2015.
Edition:1st ed. 2015.
Series:Atlantis Briefs in Differential Equations,
Subjects:
Online Access:https://doi.org/10.2991/978-94-6239-121-5
LEADER 03068nam a22004935i 4500
001 978-94-6239-121-5
003 DE-He213
005 20210617213658.0
007 cr nn 008mamaa
008 160106s2015 fr | s |||| 0|eng d
020 |a 9789462391215  |9 978-94-6239-121-5 
024 7 |a 10.2991/978-94-6239-121-5  |2 doi 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.352  |2 23 
100 1 |a Cabada, Alberto.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Differential Equations with Involutions  |h [electronic resource] /  |c by Alberto Cabada, F. Adrián F. Tojo. 
250 |a 1st ed. 2015. 
264 1 |a Paris :  |b Atlantis Press :  |b Imprint: Atlantis Press,  |c 2015. 
300 |a XIV, 154 p. 6 illus., 1 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Atlantis Briefs in Differential Equations,  |x 2405-6405 
505 0 |a Involutions and differential equations -- General results for differential equations with involutions -- Order one problems with constant coefficients -- The non-constant case -- General linear equations -- A cone approximation to a problem with reflection. 
520 |a This monograph covers the existing results regarding Green’s functions for differential equations with involutions (DEI).The first part of the book is devoted to the study of the most useful aspects of involutions from an analytical point of view and the associated algebras of differential operators. The work combines the state of the art regarding the existence and uniqueness results for DEI and new theorems describing how to obtain Green’s functions, proving that the theory can be extended to operators (not necessarily involutions) of a similar nature, such as the Hilbert transform or projections, due to their analogous algebraic properties. Obtaining a Green’s function for these operators leads to new results on the qualitative properties of the solutions, in particular maximum and antimaximum principles. 
650 0 |a Differential equations. 
650 0 |a Physics. 
650 1 4 |a Ordinary Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12147 
650 2 4 |a Mathematical Methods in Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P19013 
700 1 |a F. Tojo, F. Adrián.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789462391208 
776 0 8 |i Printed edition:  |z 9789462391222 
830 0 |a Atlantis Briefs in Differential Equations,  |x 2405-6405 
856 4 0 |u https://doi.org/10.2991/978-94-6239-121-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)