Distributed Model Predictive Control Made Easy

The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Maestre, José M. (Editor, http://id.loc.gov/vocabulary/relators/edt), Negenborn, Rudy R. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Dordrecht : Springer Netherlands : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Intelligent Systems, Control and Automation: Science and Engineering, 69
Subjects:
Online Access:https://doi.org/10.1007/978-94-007-7006-5
LEADER 08049nam a22006135i 4500
001 978-94-007-7006-5
003 DE-He213
005 20210617232645.0
007 cr nn 008mamaa
008 131110s2014 ne | s |||| 0|eng d
020 |a 9789400770065  |9 978-94-007-7006-5 
024 7 |a 10.1007/978-94-007-7006-5  |2 doi 
050 4 |a TJ212-225 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
082 0 4 |a 629.8  |2 23 
245 1 0 |a Distributed Model Predictive Control Made Easy  |h [electronic resource] /  |c edited by José M. Maestre, Rudy R. Negenborn. 
250 |a 1st ed. 2014. 
264 1 |a Dordrecht :  |b Springer Netherlands :  |b Imprint: Springer,  |c 2014. 
300 |a XVIII, 600 p. 138 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Intelligent Systems, Control and Automation: Science and Engineering,  |x 2213-8986 ;  |v 69 
505 0 |a Preface -- List of Contributors -- On 35 Approaches for Distributed MPC Made Easy, by R.R. Negenborn, J.M. Maestre.- Part I: From Small-Scale to Large-Scale. The Group of Autonomous Systems Perspective -- 1 Bargaining game based distributed MPC, by F. Valencia, J.D. López, J.A. Patiño, J.J. Espinosa.- 2 Cooperative tube-based distributed MPC for linear uncertain systems coupled via constraints, by P.A. Trodden, A.G. Richards -- 3 Price-driven coordination for distributed NMPC using a feedback control law, by R. Martí, D. Sarabia, C. de Prada -- 4 Distributed MPC for consensus and synchronization, by M.A. Müller, F. Allgöwer.- 5 Distributed MPC under coupled constraints based on Dantzig-Wolfe decomposition, by R. Bourdais, J. Buisson, D. Dumur, H. Guéguen, P-D. Moroşan -- 6 Distributed MPC via dual decomposition and alternative direction method of multipliers , by F. Farokhi, I. Shames, K.H. Johansson -- 7 D-SIORHC, distributed MPC with stability constraints based on a game approach, by J.M. Lemos, J.M. Igreja -- 8 A distributed-in-time NMPC-based coordination mechanism for resource sharing problems , by M.Y. Lamoudi, M. Alamir, P. Béguery -- 9 Rate analysis of inexact dual fast gradient method for distributed MPC, by I. Necoara -- 10 Distributed MPC via dual decomposition , by B. Biegel, J. Stoustrup, P. Andersen -- 11 Distributed optimization for MPC of linear dynamic networks, by E. Camponogara -- 12 Adaptive quasi-decentralized MPC of networked process systems, by Y. Hu, N.H. El-Farra.- 13 Distributed Lyapunov-based MPC, by R. Hermans, M. Lazar, A. Jokić -- 14 A distributed reference management scheme in presence of non-convex constraints: an MPC based approach, by F. Tedesco, D.M. Raimondo, A. Casavola -- 15 The distributed command governor approach in a nutshell, by A. Casavola, E. Garone, F. Tedesco -- 16 Mixed-integer programming techniques in distributed MPC problems, by I. Prodan, F. Stoican, S. Olaru, C. Stoica, S-I. Niculescu -- 17 Distributed MPC of interconnected nonlinear systems by dynamic dual decomposition, by A. Grancharova, T.A. Johansen -- 18 Generalized accelerated gradient methods for distributed MPC based on dual decomposition, by P. Giselsson, A. Rantzer.- 19 Distributed multiple shooting for large scale nonlinear systems, by A. Kozma, C. Savorgnan, M. Diehl.- 20 Nash-based distributed MPC for multi-rate systems , by S. Roshany-Yamchi, R.R. Negenborn, A.A. Cornelio.- Part II: From Large-Scale to Small-Scale. The Decomposed Monolithic System Perspective.- 21 Cooperative dynamic MPC for networked control systems, by I. Jurado, D.E. Quevedo, K.H. Johansson, A. Ahlén -- 22 Parallel implementation of hybrid MPC, by D. Axehill, A. Hansson -- 23 A hierarchical MPC approach with guaranteed feasibility for dynamically coupled linear systems, by M.D. Doan, T. Keviczky, B. De Schutter -- 24 Distributed MPC based on a team game, by J.M. Maestre, F.J. Muros, F. Fele, D. Muñoz de la Peña, E. F. Camacho -- 25 Distributed MPC: A noncooperative approach based on robustness concepts , by G. Betti, M. Farina, R. Scattolini -- 26 Decompositions of augmented Lagrange formulations for serial and parallel distributed MPC, by R.R. Negenborn -- 27 A hierarchical distributed MPC approach: A practical implementation, by A. Zafra-Cabeza, J.M. Maestre -- 28 Distributed MPC based on agent negotiation, by J.M. Maestre, D. Muñoz de la Peña, E.F. Camacho.- 29 Lyapunov-based distributed MPC schemes: Sequential and iterative approaches, by J. Liu, D. Muñoz de la Peña, P.D. Christofides -- 30 Multi-layer decentralized MPC of large-scale networked systems, by C. Ocampo-Martinez, V. Puig, J.M. Grosso, S. Montes-de-Oca -- 31 Distributed MPC using reinforcement learning based negotiation: Application to large scale systems, by B. Morcego, V. Javalera, V. Puig, R. Vito -- 32 Hierarchical MPC for multiple commodity transportation networks, by J.L. Nabais, R.R. Negenborn, R.B. Carmona-Benítez, L.F. Mendonça, M.A. Botto -- 33 On the use of suboptimal solvers for efficient cooperative distributed linear MPC, by G. Pannocchia, S.J. Wright, J.B. Rawlings -- 34 Cooperative distributed MPC integrating a steady state target optimizer, by A. Ferramosca, D. Limon, A.H. González -- 35 Cooperative MPC with guaranteed exponential stability, by A. Ferramosca. 
520 |a The rapid evolution of computer science, communication, and information technology has enabled the application of control techniques to systems beyond the possibilities of control theory just a decade ago. Critical infrastructures such as electricity, water, traffic and intermodal transport networks are now in the scope of control engineers. The sheer size of such large-scale systems requires the adoption of advanced distributed control approaches. Distributed model predictive control (MPC) is one of the promising control methodologies for control of such systems.   This book provides a state-of-the-art overview of distributed MPC approaches, while at the same time making clear directions of research that deserve more attention. The core and rationale of 35 approaches are carefully explained. Moreover, detailed step-by-step algorithmic descriptions of each approach are provided. These features make the book a comprehensive guide both for those seeking an introduction to distributed MPC as well as for those who want to gain a deeper insight in the wide range of distributed MPC techniques available. 
650 0 |a Control engineering. 
650 0 |a Vibration. 
650 0 |a Dynamical systems. 
650 0 |a Dynamics. 
650 0 |a System theory. 
650 0 |a Organization. 
650 0 |a Planning. 
650 0 |a Computer simulation. 
650 1 4 |a Control and Systems Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19010 
650 2 4 |a Vibration, Dynamical Systems, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15036 
650 2 4 |a Systems Theory, Control.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13070 
650 2 4 |a Organization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/516000 
650 2 4 |a Simulation and Modeling.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I19000 
700 1 |a Maestre, José M.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Negenborn, Rudy R.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9789400770058 
776 0 8 |i Printed edition:  |z 9789400770072 
776 0 8 |i Printed edition:  |z 9789402407143 
830 0 |a Intelligent Systems, Control and Automation: Science and Engineering,  |x 2213-8986 ;  |v 69 
856 4 0 |u https://doi.org/10.1007/978-94-007-7006-5 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)