Big Data Analytics Methods and Applications /

This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover t...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Pyne, Saumyadipta. (Editor, http://id.loc.gov/vocabulary/relators/edt), Rao, B.L.S. Prakasa. (Editor, http://id.loc.gov/vocabulary/relators/edt), Rao, S.B. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: New Delhi : Springer India : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-81-322-3628-3
LEADER 04611nam a22005655i 4500
001 978-81-322-3628-3
003 DE-He213
005 20210615015543.0
007 cr nn 008mamaa
008 161012s2016 ii | s |||| 0|eng d
020 |a 9788132236283  |9 978-81-322-3628-3 
024 7 |a 10.1007/978-81-322-3628-3  |2 doi 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Big Data Analytics  |h [electronic resource] :  |b Methods and Applications /  |c edited by Saumyadipta Pyne, B.L.S. Prakasa Rao, S.B. Rao. 
250 |a 1st ed. 2016. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2016. 
300 |a XII, 276 p. 67 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Introduction: The Promises and Challenges of Big Data Analytics -- Chapter 2. Massive Data Analysis: Tasks, Tools, Applications and Challenges -- Chapter 3. Statistical Challenges with Big Data in Management Science -- Chapter 4. Application of Mixture Models to Large Datasets -- Chapter 5. An Efficient Partition-Repetition Approach in Clustering of Big Data -- Chapter 6. Multithreaded Graph Algorithms for Large-scale Analytics -- Chapter 7. On-line Graph Partitioning with an Affine Message Combining Cost Function -- Chapter 8. Big Data Analytics Platforms for Real-time Applications in IoT -- Chapter 9. Complex Event Processing in Big Data Systems -- Chapter 10. Unwanted Traffic Identification in Large-scale University Networks: A Case Study -- Chapter 11. Application-Level Benchmarking of Big Data Systems -- Chapter 12. Managing Large Scale Standardized Electronic Healthcare Records -- Chapter 13. Microbiome Data Mining for Microbial Interactions and Relationships -- Chapter 14. A Nonlinear Technique for Analysis of Big Data in Neuroscience -- Chapter 15. Big Data and Cancer Research. 
520 |a This book has a collection of articles written by Big Data experts to describe some of the cutting-edge methods and applications from their respective areas of interest, and provides the reader with a detailed overview of the field of Big Data Analytics as it is practiced today. The chapters cover technical aspects of key areas that generate and use Big Data such as management and finance; medicine and healthcare; genome, cytome and microbiome; graphs and networks; Internet of Things; Big Data standards; bench-marking of systems; and others. In addition to different applications, key algorithmic approaches such as graph partitioning, clustering and finite mixture modelling of high-dimensional data are also covered. The varied collection of themes in this volume introduces the reader to the richness of the emerging field of Big Data Analytics. 
650 0 |a Statistics . 
650 0 |a Data mining. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Statistics for Life Sciences, Medicine, Health Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17030 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17040 
650 2 4 |a Statistics for Business, Management, Economics, Finance, Insurance.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17010 
650 2 4 |a Data Mining and Knowledge Discovery.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I18030 
650 2 4 |a Applications of Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13003 
700 1 |a Pyne, Saumyadipta.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rao, B.L.S. Prakasa.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rao, S.B.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132236269 
776 0 8 |i Printed edition:  |z 9788132236276 
776 0 8 |i Printed edition:  |z 9788132238713 
856 4 0 |u https://doi.org/10.1007/978-81-322-3628-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)