Summary: | Applied Environmental Biotechnology: Present Scenario and Future Trends is designed to serve as a reference book for students and researchers working in the area of applied environmental science. It presents various applications of environmental studies that involve the use of living organisms, bioprocesses engineering technology, and other fields in solving environmental problems like waste and waste waters. It includes not only the pure biological sciences such as genetics, microbiology, biochemistry and chemistry but also from outside the sphere of biology such as chemical engineering, bioprocess engineering, information technology, and biophysics. Starting with the fundamentals of bioremediation, the book introduces various environmental applications such as bioremediation, phytoremediation, microbial diversity in conservation and exploration, in-silico approach to study the regulatory mechanisms and pathways of industrially important microorganisms biological phosphorous removal, ameliorative approaches for management of chromium phytotoxicity, sustainable production of biofuels from microalgae using a biorefinery approach, bioelectrochemical systems (BES) for microbial electroremediation and oil spill remediation. The book has been designed to serve as comprehensive environmental biotechnology textbooks as well as wide-ranging reference books. Environmental remediation, pollution control, detection and monitoring are evaluated considering the achievement as well as the perspectives in the development of environmental biotechnology. Various relevant articles are chosen up to illustrate the main areas of environmental biotechnology: industrial waste water treatment, soil treatment, oil remediation, phytoremediation, microbial electro remediation and development of biofuels dealing with microbial and process engineering aspects. The distinct role of environmental biotechnology in future is emphasized considering the opportunities to contribute with new approached and directions in remediation of contaminated environment, minimising waste releases and development pollution prevention alternatives at before and end of pipe. . |