Chaotic Dynamics in Nonlinear Theory

Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like stru...

Full description

Main Author: Burra, Lakshmi. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New Delhi : Springer India : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-81-322-2092-3
LEADER 03173nam a22005175i 4500
001 978-81-322-2092-3
003 DE-He213
005 20210617042135.0
007 cr nn 008mamaa
008 140910s2014 ii | s |||| 0|eng d
020 |a 9788132220923  |9 978-81-322-2092-3 
024 7 |a 10.1007/978-81-322-2092-3  |2 doi 
050 4 |a QA313 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
082 0 4 |a 515.39  |2 23 
082 0 4 |a 515.48  |2 23 
100 1 |a Burra, Lakshmi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Chaotic Dynamics in Nonlinear Theory  |h [electronic resource] /  |c by Lakshmi Burra. 
250 |a 1st ed. 2014. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XIX, 104 p. 48 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Topological Considerations -- Chapter 2. Topological horseshoes and coin-tossing dynamics -- Chapter 3. Chaotic Dynamics in the vertically driven planar pendulum -- Chapter 4. Chaos in a pendulum with variable length. 
520 |a Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In dynamical systems, complex behavior in a map can be indicated by showing the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 0 |a Partial differential equations. 
650 0 |a Statistical physics. 
650 1 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
650 2 4 |a Applications of Nonlinear Dynamics and Chaos Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/P33020 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132220930 
776 0 8 |i Printed edition:  |z 9788132220916 
776 0 8 |i Printed edition:  |z 9788132235439 
856 4 0 |u https://doi.org/10.1007/978-81-322-2092-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)