A First Course in Ordinary Differential Equations Analytical and Numerical Methods /

This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and ex...

Full description

Main Authors: Hermann, Martin. (Author, http://id.loc.gov/vocabulary/relators/aut), Saravi, Masoud. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: New Delhi : Springer India : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-81-322-1835-7
LEADER 04599nam a22005895i 4500
001 978-81-322-1835-7
003 DE-He213
005 20210618200624.0
007 cr nn 008mamaa
008 140422s2014 ii | s |||| 0|eng d
020 |a 9788132218357  |9 978-81-322-1835-7 
024 7 |a 10.1007/978-81-322-1835-7  |2 doi 
050 4 |a QA372 
072 7 |a PBKJ  |2 bicssc 
072 7 |a MAT007000  |2 bisacsh 
072 7 |a PBKJ  |2 thema 
082 0 4 |a 515.352  |2 23 
100 1 |a Hermann, Martin.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A First Course in Ordinary Differential Equations  |h [electronic resource] :  |b Analytical and Numerical Methods /  |c by Martin Hermann, Masoud Saravi. 
250 |a 1st ed. 2014. 
264 1 |a New Delhi :  |b Springer India :  |b Imprint: Springer,  |c 2014. 
300 |a XIV, 288 p. 10 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Chapter 1. Basic Concepts of Differential Equations -- Chapter 2. First-Order Differential Equations -- Chapter 3. Second-Order Differential Equations -- Chapter 4. Laplace Transforms -- Chapter 5. System of Linear Differential Equations -- Chapter 6. Power Series Solutions -- Chapter 7. Numerical Methods for Initial Value Problems -- Chapter 8. Shooting Methods for Linear Boundary -- Appendix A. Power Series -- Appendix B. Some elementary integration formulae -- Appendix C. Table of Laplace    transforms.             . 
520 |a This book presents a modern introduction to analytical and numerical techniques for solving ordinary differential equations (ODEs). Contrary to the traditional format—the theorem-and-proof format—the book is focusing on analytical and numerical methods. The book supplies a variety of problems and examples, ranging from the elementary to the advanced level, to introduce and study the mathematics of ODEs. The analytical part of the book deals with solution techniques for scalar first-order and second-order linear ODEs, and systems of linear ODEs—with a special focus on the Laplace transform, operator techniques and power series solutions. In the numerical part, theoretical and practical aspects of Runge-Kutta methods for solving initial-value problems and shooting methods for linear two-point boundary-value problems are considered. The book is intended as a primary text for courses on the theory of ODEs and numerical treatment of ODEs for advanced undergraduate and early graduate students. It is assumed that the reader has a basic grasp of elementary calculus, in particular methods of integration, and of numerical analysis. Physicists, chemists, biologists, computer scientists and engineers whose work involves solving ODEs will also find the book useful as a reference work and tool for independent study. The book has been prepared within the framework of a German–Iranian research project on mathematical methods for ODEs, which was started in early 2012. 
650 0 |a Differential equations. 
650 0 |a Numerical analysis. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 0 |a Mathematical physics. 
650 0 |a Mechanics. 
650 0 |a Mechanics, Applied. 
650 1 4 |a Ordinary Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12147 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Applications of Mathematics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13003 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
650 2 4 |a Solid Mechanics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T15010 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
700 1 |a Saravi, Masoud.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9788132218364 
776 0 8 |i Printed edition:  |z 9788132218340 
776 0 8 |i Printed edition:  |z 9788132235279 
856 4 0 |u https://doi.org/10.1007/978-81-322-1835-7 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)