Applied Matrix and Tensor Variate Data Analysis

This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied field...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Sakata, Toshio. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Tokyo : Springer Japan : Imprint: Springer, 2016.
Edition:1st ed. 2016.
Series:JSS Research Series in Statistics,
Subjects:
Online Access:https://doi.org/10.1007/978-4-431-55387-8
LEADER 03842nam a22004815i 4500
001 978-4-431-55387-8
003 DE-He213
005 20210617134256.0
007 cr nn 008mamaa
008 160202s2016 ja | s |||| 0|eng d
020 |a 9784431553878  |9 978-4-431-55387-8 
024 7 |a 10.1007/978-4-431-55387-8  |2 doi 
050 4 |a QA276-280 
072 7 |a UFM  |2 bicssc 
072 7 |a COM077000  |2 bisacsh 
072 7 |a UFM  |2 thema 
082 0 4 |a 519.5  |2 23 
245 1 0 |a Applied Matrix and Tensor Variate Data Analysis  |h [electronic resource] /  |c edited by Toshio Sakata. 
250 |a 1st ed. 2016. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2016. 
300 |a XI, 136 p. 36 illus., 23 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a JSS Research Series in Statistics,  |x 2364-0057 
505 0 |a 1 Three-Way Principal Component Analysis with its Applications to Psychology (Kohei Adachi) -- 2 Non-negative matrix factorization and its variants for audio signal processing (Hirokazu Kameoka) -- 3 Generalized Tensor PCA and its Applications to Image Analysis (Kohei Inoue) -- 4 Matrix Factorization for Image Processing (Noboru Murata) -- 5 Arrays Normal Model and Incomplete Array Variate Observations (Deniz Akdemir) -- 6 One-sided Tests for Matrix Variate Normal Distribution (Manabu Iwasa and Toshio Sakata). 
520 |a This book provides comprehensive reviews of recent progress in matrix variate and tensor variate data analysis from applied points of view. Matrix and tensor approaches for data analysis are known to be extremely useful for recently emerging complex and high-dimensional data in various applied fields. The reviews contained herein cover recent applications of these methods in psychology (Chap. 1), audio signals (Chap. 2) , image analysis  from tensor principal component analysis (Chap. 3), and image analysis from decomposition (Chap. 4), and genetic data (Chap. 5) . Readers will be able to understand the present status of these techniques as applicable to their own fields.  In Chapter 5 especially, a theory of tensor normal distributions, which is a basic in statistical inference, is developed, and multi-way regression, classification, clustering, and principal component analysis are exemplified under tensor normal distributions. Chapter 6 treats one-sided tests under matrix variate and tensor variate normal distributions, whose theory under multivariate normal distributions has been a popular topic in statistics since the books of Barlow et al. (1972) and Robertson et al. (1988). Chapters 1, 5, and 6 distinguish this book from ordinary engineering books on these topics. 
650 0 |a Statistics . 
650 1 4 |a Statistics and Computing/Statistics Programs.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S12008 
650 2 4 |a Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17020 
650 2 4 |a Statistics for Social Sciences, Humanities, Law.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/S17040 
700 1 |a Sakata, Toshio.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431553861 
776 0 8 |i Printed edition:  |z 9784431553885 
830 0 |a JSS Research Series in Statistics,  |x 2364-0057 
856 4 0 |u https://doi.org/10.1007/978-4-431-55387-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)