Lie Theory and Its Applications in Physics IX International Workshop /

Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in un...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Dobrev, Vladimir. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Tokyo : Springer Japan : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Springer Proceedings in Mathematics & Statistics, 36
Subjects:
Online Access:https://doi.org/10.1007/978-4-431-54270-4
LEADER 03242nam a22005415i 4500
001 978-4-431-54270-4
003 DE-He213
005 20200630165021.0
007 cr nn 008mamaa
008 130409s2013 ja | s |||| 0|eng d
020 |a 9784431542704  |9 978-4-431-54270-4 
024 7 |a 10.1007/978-4-431-54270-4  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
245 1 0 |a Lie Theory and Its Applications in Physics  |h [electronic resource] :  |b IX International Workshop /  |c edited by Vladimir Dobrev. 
250 |a 1st ed. 2013. 
264 1 |a Tokyo :  |b Springer Japan :  |b Imprint: Springer,  |c 2013. 
300 |a XIV, 554 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 36 
520 |a Traditionally, Lie Theory is a tool to build mathematical models for physical systems. Recently, the trend is towards geometrisation of the mathematical description of physical systems and objects. A geometric approach to a system yields in general some notion of symmetry which is very helpful in understanding its structure. Geometrisation and symmetries are meant in their broadest sense, i.e., classical geometry, differential geometry, groups and quantum groups, infinite-dimensional (super-)algebras, and their representations. Furthermore, we include the necessary tools from functional analysis and number theory. This is a large interdisciplinary and interrelated field. Samples of these new trends are presented in this volume, based on contributions from the Workshop “Lie Theory and Its Applications in Physics”  held near Varna, Bulgaria, in June 2011. This book is suitable for an extensive audience of mathematicians, mathematical physicists, theoretical physicists, and researchers in the field of Lie Theory. 
650 0 |a Algebra. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Geometry. 
650 0 |a Mathematical physics. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Topological Groups, Lie Groups.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11132 
650 2 4 |a Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21006 
650 2 4 |a Mathematical Physics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M35000 
700 1 |a Dobrev, Vladimir.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9784431546955 
776 0 8 |i Printed edition:  |z 9784431542698 
776 0 8 |i Printed edition:  |z 9784431542711 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 36 
856 4 0 |u https://doi.org/10.1007/978-4-431-54270-4 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)