Approximation of Additive Convolution-Like Operators Real C*-Algebra Approach /

Various aspects of numerical analysis for equations arising in boundary integral equation methods have been the subject of several books published in the last 15 years [95, 102, 183, 196, 198]. Prominent examples include various classes of o- dimensional singular integral equations or equations rela...

Full description

Main Authors: Didenko, Victor. (Author, http://id.loc.gov/vocabulary/relators/aut), Silbermann, Bernd. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edition:1st ed. 2008.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-7643-8751-8
LEADER 04425nam a22006015i 4500
001 978-3-7643-8751-8
003 DE-He213
005 20210616145625.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764387518  |9 978-3-7643-8751-8 
024 7 |a 10.1007/978-3-7643-8751-8  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Didenko, Victor.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Approximation of Additive Convolution-Like Operators  |h [electronic resource] :  |b Real C*-Algebra Approach /  |c by Victor Didenko, Bernd Silbermann. 
250 |a 1st ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XII, 306 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Complex and Real Algebras -- Approximation of Additive Integral Operators on Smooth Curves -- Approximation Methods for the Riemann-Hilbert Problem -- Piecewise Smooth and Open Contours -- Approximation Methods for the Muskhelishvili Equation -- Numerical Examples. 
520 |a Various aspects of numerical analysis for equations arising in boundary integral equation methods have been the subject of several books published in the last 15 years [95, 102, 183, 196, 198]. Prominent examples include various classes of o- dimensional singular integral equations or equations related to single and double layer potentials. Usually, a mathematically rigorous foundation and error analysis for the approximate solution of such equations is by no means an easy task. One reason is the fact that boundary integral operators generally are neither integral operatorsof the formidentity plus compact operatornor identity plus an operator with a small norm. Consequently, existing standard theories for the numerical analysis of Fredholm integral equations of the second kind are not applicable. In the last 15 years it became clear that the Banach algebra technique is a powerful tool to analyze the stability problem for relevant approximation methods [102, 103, 183, 189]. The starting point for this approach is the observation that the ? stability problem is an invertibility problem in a certain BanachorC -algebra. As a rule, this algebra is very complicated – and one has to ?nd relevant subalgebras to use such tools as local principles and representation theory. However,invariousapplicationsthereoftenarisecontinuousoperatorsacting on complex Banach spaces that are not linear but only additive – i. e. , A(x+y)= Ax+Ay for all x,y from a given Banach space. It is easily seen that additive operators 1 are R-linear provided they are continuous. 
650 0 |a Algebra. 
650 0 |a Operator theory. 
650 0 |a Numerical analysis. 
650 0 |a Integral equations. 
650 0 |a Integral transforms. 
650 0 |a Operational calculus. 
650 0 |a Partial differential equations. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Integral Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12090 
650 2 4 |a Integral Transforms, Operational Calculus.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12112 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
700 1 |a Silbermann, Bernd.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764398217 
776 0 8 |i Printed edition:  |z 9783764387501 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://doi.org/10.1007/978-3-7643-8751-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)