Gradient Flows In Metric Spaces and in the Space of Probability Measures /

Main Authors: Ambrosio, Luigi. (Author, http://id.loc.gov/vocabulary/relators/aut), Gigli, Nicola. (http://id.loc.gov/vocabulary/relators/aut), Savare, Giuseppe. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edition:2nd ed. 2008.
Series:Lectures in Mathematics. ETH Zürich
Subjects:
Online Access:https://doi.org/10.1007/978-3-7643-8722-8
LEADER 03052nam a22005535i 4500
001 978-3-7643-8722-8
003 DE-He213
005 20210615143357.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764387228  |9 978-3-7643-8722-8 
024 7 |a 10.1007/978-3-7643-8722-8  |2 doi 
050 4 |a QA299.6-433 
072 7 |a PBK  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBK  |2 thema 
082 0 4 |a 515  |2 23 
100 1 |a Ambrosio, Luigi.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Gradient Flows  |h [electronic resource] :  |b In Metric Spaces and in the Space of Probability Measures /  |c by Luigi Ambrosio, Nicola Gigli, Giuseppe Savare. 
250 |a 2nd ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a IX, 334 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Lectures in Mathematics. ETH Zürich 
505 0 |a Notation -- Notation -- Gradient Flow in Metric Spaces -- Curves and Gradients in Metric Spaces -- Existence of Curves of Maximal Slope and their Variational Approximation -- Proofs of the Convergence Theorems -- Uniqueness, Generation of Contraction Semigroups, Error Estimates -- Gradient Flow in the Space of Probability Measures -- Preliminary Results on Measure Theory -- The Optimal Transportation Problem -- The Wasserstein Distance and its Behaviour along Geodesics -- Absolutely Continuous Curves in p(X) and the Continuity Equation -- Convex Functionals in p(X) -- Metric Slope and Subdifferential Calculus in (X) -- Gradient Flows and Curves of Maximal Slope in p(X). 
650 0 |a Mathematical analysis. 
650 0 |a Analysis (Mathematics). 
650 0 |a Measure theory. 
650 0 |a Differential geometry. 
650 0 |a Probabilities. 
650 1 4 |a Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12007 
650 2 4 |a Measure and Integration.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12120 
650 2 4 |a Differential Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21022 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
700 1 |a Gigli, Nicola.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Savare, Giuseppe.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764398088 
776 0 8 |i Printed edition:  |z 9783764387211 
830 0 |a Lectures in Mathematics. ETH Zürich 
856 4 0 |u https://doi.org/10.1007/978-3-7643-8722-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)