Institution-independent Model Theory

A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise mathematical formulation for the intuitive concept of a logical system. Especially...

Full description

Main Author: Diaconescu, Razvan. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2008.
Edition:1st ed. 2008.
Series:Studies in Universal Logic,
Subjects:
Online Access:https://doi.org/10.1007/978-3-7643-8708-2
LEADER 03103nam a22005055i 4500
001 978-3-7643-8708-2
003 DE-He213
005 20210623134316.0
007 cr nn 008mamaa
008 100301s2008 sz | s |||| 0|eng d
020 |a 9783764387082  |9 978-3-7643-8708-2 
024 7 |a 10.1007/978-3-7643-8708-2  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Diaconescu, Razvan.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Institution-independent Model Theory  |h [electronic resource] /  |c by Razvan Diaconescu. 
250 |a 1st ed. 2008. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2008. 
300 |a XI, 376 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Universal Logic,  |x 2297-0282 
505 0 |a Categories -- Institutions -- Theories and Models -- Internal Logic -- Model Ultraproducts -- Saturated Models -- Preservation and Axiomatizability -- Interpolation -- Definability -- Possible Worlds -- Grothendieck Institutions -- Institutions with Proofs -- Specification -- Logic Programming. 
520 |a A model theory that is independent of any concrete logical system allows a general handling of a large variety of logics. This generality can be achieved by applying the theory of institutions that provides a precise mathematical formulation for the intuitive concept of a logical system. Especially in computer science, where the development of a huge number of specification logics is observable, institution-independent model theory simplifies and sometimes even enables a concise model-theoretic analysis of the system. Besides incorporating important methods and concepts from conventional model theory, the proposed top-down methodology allows for a structurally clean understanding of model-theoretic phenomena. As a consequence, results from conventional concrete model theory can be understood more easily, and sometimes even new results are obtained. 
650 0 |a Mathematical logic. 
650 0 |a Logic. 
650 1 4 |a Mathematical Logic and Foundations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M24005 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16048 
650 2 4 |a Logic.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/E16000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764398033 
776 0 8 |i Printed edition:  |z 9783764387075 
830 0 |a Studies in Universal Logic,  |x 2297-0282 
856 4 0 |u https://doi.org/10.1007/978-3-7643-8708-2 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)