Kripke’s Worlds An Introduction to Modal Logics via Tableaux /

Possible worlds models were introduced by Saul Kripke in the early 1960s. Basically, a possible worlds model is nothing but a graph with labelled nodes and labelled edges. Such graphs provide semantics for various modal logics (alethic, temporal, epistemic and doxastic, dynamic, deontic, description...

Full description

Main Authors: Gasquet, Olivier. (Author, http://id.loc.gov/vocabulary/relators/aut), Herzig, Andreas. (http://id.loc.gov/vocabulary/relators/aut), Said, Bilal. (http://id.loc.gov/vocabulary/relators/aut), Schwarzentruber, François. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Basel : Springer Basel : Imprint: Birkhäuser, 2014.
Edition:1st ed. 2014.
Series:Studies in Universal Logic,
Subjects:
Online Access:https://doi.org/10.1007/978-3-7643-8504-0
LEADER 04470nam a22005295i 4500
001 978-3-7643-8504-0
003 DE-He213
005 20210615092924.0
007 cr nn 008mamaa
008 131120s2014 sz | s |||| 0|eng d
020 |a 9783764385040  |9 978-3-7643-8504-0 
024 7 |a 10.1007/978-3-7643-8504-0  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
100 1 |a Gasquet, Olivier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Kripke’s Worlds  |h [electronic resource] :  |b An Introduction to Modal Logics via Tableaux /  |c by Olivier Gasquet, Andreas Herzig, Bilal Said, François Schwarzentruber. 
250 |a 1st ed. 2014. 
264 1 |a Basel :  |b Springer Basel :  |b Imprint: Birkhäuser,  |c 2014. 
300 |a XV, 198 p. 73 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Studies in Universal Logic,  |x 2297-0282 
505 0 |a Preface -- 1 Modelling things with graphs -- 2 Talking about graphs -- 3 The basics of the model construction method -- 4 Logics with simple constraints on models -- 5 Logics with transitive accessibility relations -- 6 Model Checking -- 7 Modal logics with transitive closure -- Bibliography -- Index. 
520 |a Possible worlds models were introduced by Saul Kripke in the early 1960s. Basically, a possible worlds model is nothing but a graph with labelled nodes and labelled edges. Such graphs provide semantics for various modal logics (alethic, temporal, epistemic and doxastic, dynamic, deontic, description logics) and also turned out useful for other nonclassical logics (intuitionistic, conditional, several paraconsistent and relevant logics). All these logics have been studied intensively in philosophical and mathematical logic and in computer science, and have been applied increasingly in domains such as program semantics, artificial intelligence, and more recently in the semantic web. Additionally, all these logics were also studied proof theoretically. The proof systems for modal logics come in various styles: Hilbert style, natural deduction, sequents, and resolution. However, it is fair to say that the most uniform and most successful such systems are tableaux systems. Given a logic and a formula, they allow one to check whether there is a model in that logic. This basically amounts to trying to build a model for the formula by building a tree. This book follows a more general approach by trying to build a graph, the advantage being that a graph is closer to a Kripke model than a tree. It provides a step-by-step introduction to possible worlds semantics (and by that to modal and other nonclassical logics) via the tableaux method. It is accompanied by a piece of software called LoTREC (www.irit.fr/Lotrec). LoTREC allows to check whether a given formula is true at a given world of a given model and to check whether a given formula is satisfiable in a given logic. The latter can be done immediately if the tableau system for that logic has already been implemented in LoTREC. If this is not yet the case LoTREC offers the possibility to implement a tableau system in a relatively easy way via a simple, graph-based, interactive language. >dy>. 
650 0 |a Mathematical logic. 
650 0 |a Mathematics. 
650 1 4 |a Mathematical Logic and Foundations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M24005 
650 2 4 |a Mathematics, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M00009 
700 1 |a Herzig, Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Said, Bilal.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Schwarzentruber, François.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764394486 
776 0 8 |i Printed edition:  |z 9783764385033 
830 0 |a Studies in Universal Logic,  |x 2297-0282 
856 4 0 |u https://doi.org/10.1007/978-3-7643-8504-0 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)