Artinian Modules over Group Rings

Main Authors: Kurdachenko, Leonid. (Author, http://id.loc.gov/vocabulary/relators/aut), Otal, Javier. (http://id.loc.gov/vocabulary/relators/aut), Subbotin, Igor Ya. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Basel : Birkhäuser Basel : Imprint: Birkhäuser, 2007.
Edition:1st ed. 2007.
Series:Frontiers in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-7643-7765-6
LEADER 02522nam a22004695i 4500
001 978-3-7643-7765-6
003 DE-He213
005 20210616191228.0
007 cr nn 008mamaa
008 100301s2007 sz | s |||| 0|eng d
020 |a 9783764377656  |9 978-3-7643-7765-6 
024 7 |a 10.1007/978-3-7643-7765-6  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Kurdachenko, Leonid.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Artinian Modules over Group Rings  |h [electronic resource] /  |c by Leonid Kurdachenko, Javier Otal, Igor Ya Subbotin. 
250 |a 1st ed. 2007. 
264 1 |a Basel :  |b Birkhäuser Basel :  |b Imprint: Birkhäuser,  |c 2007. 
300 |a XII, 247 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Frontiers in Mathematics,  |x 1660-8046 
505 0 |a Modules with chain conditions -- Ranks of groups -- Some generalized nilpotent groups -- Artinian modules and the socle -- Reduction to subgroups of finite index -- Modules over Dedekind domains -- The Kovacs-Newman theorem -- Hartley’s classes of modules -- The injectivity of some simple modules -- Direct decompositions in artinian modules -- On the countability of artinian modules over FC-hypercentral groups -- Artinian modules over periodic abelian groups -- Nearly injective modules -- Artinian modules over abelian groups of finite section rank -- The injective envelopes of simple modules over group rings -- Quasifinite modules -- Some applications: splitting over the locally nilpotent residual. 
650 0 |a Algebra. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
700 1 |a Otal, Javier.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
700 1 |a Subbotin, Igor Ya.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783764391522 
776 0 8 |i Printed edition:  |z 9783764377649 
830 0 |a Frontiers in Mathematics,  |x 1660-8046 
856 4 0 |u https://doi.org/10.1007/978-3-7643-7765-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)