Analysis II
As with the first, the second volume contains substantially more material than can be covered in a one-semester course. Such courses may omit many beautiful and well-grounded applications which connect broadly to many areas of mathematics. We of course hope that students will pursue this material in...
Main Authors: | , |
---|---|
Corporate Author: | |
Language: | English |
Published: |
Cham :
Springer International Publishing : Imprint: Birkhäuser,
2008.
|
Edition: | 1st ed. 2008. |
Subjects: | |
Online Access: | https://doi.org/10.1007/978-3-7643-7478-5 |
Table of Contents:
- Preface
- VI. Integral Calculus in One Variable - 1. Step Continuous Functions - 2. Continuous Extensions - 3. The Cauchy-Riemann Integral - 4. Properties of the Integral - 5. The Technology of Integration - 6. Sums and Integrals - 7. Fourier Series - 8. Improper Integrals - 9. The Gamma Function
- VII. Differential Calculus in Several Variables - 1. Continuous Linear Mappings - 2. Differentiability - 3. Calculation Rules - 4. Multilinear Mappings - 5. Higher Derivatives - 6. Nemytski Operators and Calculus of Variations - 7. Inverse Mappings - 8. Implicit Functions - 9. Manifolds - 10. Tangents and Normals
- VIII. Line Integrals - 1. Curves and Their Length - 2. Curves in Rn - 3. Pfaff Forms - 4. Line Integrals - 5. Holomorphic Functions - 6. Meromorphic Functions
- Bibliography
- Index.