Introduction to Learning Classifier Systems

This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, a...

Full description

Main Authors: Urbanowicz, Ryan J. (Author, http://id.loc.gov/vocabulary/relators/aut), Browne, Will N. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2017.
Edition:1st ed. 2017.
Series:SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-662-55007-6
LEADER 03908nam a22006135i 4500
001 978-3-662-55007-6
003 DE-He213
005 20210619061131.0
007 cr nn 008mamaa
008 170817s2017 gw | s |||| 0|eng d
020 |a 9783662550076  |9 978-3-662-55007-6 
024 7 |a 10.1007/978-3-662-55007-6  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Urbanowicz, Ryan J.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Introduction to Learning Classifier Systems  |h [electronic resource] /  |c by Ryan J. Urbanowicz, Will N. Browne. 
250 |a 1st ed. 2017. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2017. 
300 |a XIII, 123 p. 27 illus., 4 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
505 0 |a LCSs in a Nutshell -- LCS Concepts -- Functional Cycle Components -- LCS Adaptability -- Applying LCSs. 
520 |a This accessible introduction shows the reader how to understand, implement, adapt, and apply Learning Classifier Systems (LCSs) to interesting and difficult problems. The text builds an understanding from basic ideas and concepts. The authors first explore learning through environment interaction, and then walk through the components of LCS that form this rule-based evolutionary algorithm. The applicability and adaptability of these methods is highlighted by providing descriptions of common methodological alternatives for different components that are suited to different types of problems from data mining to autonomous robotics. The authors have also paired exercises and a simple educational LCS (eLCS) algorithm (implemented in Python) with this book. It is suitable for courses or self-study by advanced undergraduate and postgraduate students in subjects such as Computer Science, Engineering, Bioinformatics, and Cybernetics, and by researchers, data analysts, and machine learning practitioners. 
650 0 |a Artificial intelligence. 
650 0 |a Computational intelligence. 
650 0 |a Mathematical optimization. 
650 0 |a Bioinformatics. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Computers. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Computational Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11014 
650 2 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
650 2 4 |a Computational Biology/Bioinformatics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I23050 
650 2 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Theory of Computation.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16005 
700 1 |a Browne, Will N.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662550069 
776 0 8 |i Printed edition:  |z 9783662550083 
830 0 |a SpringerBriefs in Intelligent Systems, Artificial Intelligence, Multiagent Systems, and Cognitive Robotics,  |x 2196-548X 
856 4 0 |u https://doi.org/10.1007/978-3-662-55007-6 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)