Feature Coding for Image Representation and Recognition

This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review...

Full description

Main Authors: Huang, Yongzhen. (Author, http://id.loc.gov/vocabulary/relators/aut), Tan, Tieniu. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:SpringerBriefs in Computer Science,
Subjects:
Online Access:https://doi.org/10.1007/978-3-662-45000-0
LEADER 03615nam a22005535i 4500
001 978-3-662-45000-0
003 DE-He213
005 20210617124234.0
007 cr nn 008mamaa
008 150105s2014 gw | s |||| 0|eng d
020 |a 9783662450000  |9 978-3-662-45000-0 
024 7 |a 10.1007/978-3-662-45000-0  |2 doi 
050 4 |a Q337.5 
050 4 |a TK7882.P3 
072 7 |a UYQP  |2 bicssc 
072 7 |a COM016000  |2 bisacsh 
072 7 |a UYQP  |2 thema 
082 0 4 |a 006.4  |2 23 
100 1 |a Huang, Yongzhen.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Feature Coding for Image Representation and Recognition  |h [electronic resource] /  |c by Yongzhen Huang, Tieniu Tan. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XIII, 74 p. 36 illus., 32 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Computer Science,  |x 2191-5768 
505 0 |a 1. Introduction -- 2. Taxonomy -- 3. Representative Feature Coding Algorithms -- 4. Evolution of Feature Coding -- 5. Experimental Study of Feature Coding -- 6. Enhancement via Integrating Spatial Information -- 7. Enhancement via Integrating High Order Coding Information -- 8. Conclusion. 
520 |a This brief presents a comprehensive introduction to feature coding, which serves as a key module for the typical object recognition pipeline. The text offers a rich blend of theory and practice while reflects the recent developments on feature coding, covering the following five aspects: (1) Review the state-of-the-art, analyzing the motivations and mathematical representations of various feature coding methods; (2) Explore how various feature coding algorithms evolve along years; (3) Summarize the main characteristics of typical feature coding algorithms and categorize them accordingly; (4) Discuss the applications of feature coding in different visual tasks, analyze the influence of some key factors in feature coding with intensive experimental studies; (5) Provide the suggestions of how to apply different feature coding methods and forecast the potential directions for future work on the topic. It is suitable for students, researchers, practitioners interested in object recognition. 
650 0 |a Pattern recognition. 
650 0 |a Optical data processing. 
650 0 |a Artificial intelligence. 
650 0 |a Algorithms. 
650 1 4 |a Pattern Recognition.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I2203X 
650 2 4 |a Image Processing and Computer Vision.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I22021 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Algorithm Analysis and Problem Complexity.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16021 
700 1 |a Tan, Tieniu.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662450017 
776 0 8 |i Printed edition:  |z 9783662449998 
830 0 |a SpringerBriefs in Computer Science,  |x 2191-5768 
856 4 0 |u https://doi.org/10.1007/978-3-662-45000-0 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)