Explosive Percolation in Random Networks

This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that l...

Full description

Main Author: Chen, Wei. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Springer Theses, Recognizing Outstanding Ph.D. Research,
Subjects:
Online Access:https://doi.org/10.1007/978-3-662-43739-1
LEADER 03180nam a22005415i 4500
001 978-3-662-43739-1
003 DE-He213
005 20210618020819.0
007 cr nn 008mamaa
008 140715s2014 gw | s |||| 0|eng d
020 |a 9783662437391  |9 978-3-662-43739-1 
024 7 |a 10.1007/978-3-662-43739-1  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Chen, Wei.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Explosive Percolation in Random Networks  |h [electronic resource] /  |c by Wei Chen. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XV, 63 p. 22 illus., 9 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
505 0 |a Introduction -- Discontinuous Explosive Percolation with Multiple Giant Components -- Deriving An Underlying Mechanism for Discontinuous Percolation Transitions -- Continuous Phase Transitions in Supercritical Explosive Percolation -- Unstable Supercritical Discontinuous Percolation Transitions -- Algorithm of percolation models. 
520 |a This thesis is devoted to the study of the Bohman-Frieze-Wormald percolation model, which exhibits a discontinuous transition at the critical threshold, while the phase transitions in random networks are originally considered to be robust continuous phase transitions. The underlying mechanism that leads to the discontinuous transition in this model is carefully analyzed and many interesting critical behaviors, including multiple giant components, multiple phase transitions, and unstable giant components are revealed. These findings should also be valuable with regard to applications in other disciplines such as physics, chemistry and biology. 
650 0 |a Probabilities. 
650 0 |a Numerical analysis. 
650 0 |a Mathematical physics. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Numerical Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M14050 
650 2 4 |a Mathematical Applications in the Physical Sciences.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M13120 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783662437407 
776 0 8 |i Printed edition:  |z 9783662437384 
776 0 8 |i Printed edition:  |z 9783662515396 
830 0 |a Springer Theses, Recognizing Outstanding Ph.D. Research,  |x 2190-5053 
856 4 0 |u https://doi.org/10.1007/978-3-662-43739-1 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)