Evolutionary Wind Turbine Placement Optimization with Geographical Constraints

Daniel Lückehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situatio...

Full description

Main Author: Lückehe, Daniel. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2017.
Edition:1st ed. 2017.
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-18465-0
LEADER 03558nam a22004935i 4500
001 978-3-658-18465-0
003 DE-He213
005 20210619082803.0
007 cr nn 008mamaa
008 170529s2017 gw | s |||| 0|eng d
020 |a 9783658184650  |9 978-3-658-18465-0 
024 7 |a 10.1007/978-3-658-18465-0  |2 doi 
050 4 |a Q334-342 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
082 0 4 |a 006.3  |2 23 
100 1 |a Lückehe, Daniel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Evolutionary Wind Turbine Placement Optimization with Geographical Constraints  |h [electronic resource] /  |c by Daniel Lückehe. 
250 |a 1st ed. 2017. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2017. 
300 |a XXII, 195 p. 64 illus., 15 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Solving Optimization Problems -- Wind Prediction Model -- Geographical Planning Scenarios -- Constrained Placement Optimization -- Constraint Handling with Penalty Functions -- Advanced Evolutionary Heuristics. 
520 |a Daniel Lückehe presents different approaches to optimize locations of multiple wind turbines on a topographical map. The author succeeds in significantly improving placement solutions by employing optimization heuristics. He proposes various real-world scenarios that represent real planning situations. Advanced evolutionary heuristics for the turbine placement optimization create not only highly optimized solutions but also significantly different solutions to give decision-makers optimal choices. As a matter of fact, wind turbines play an important role towards green energy supply. An optimal location is essential to achieve the highest possible energy efficiency. Contents Solving Optimization Problems Wind Prediction Model Geographical Planning Scenarios Constrained Placement Optimization Constraint Handling with Penalty Functions Advanced Evolutionary Heuristics Target Groups Lecturers and students of computer science, especially in optimization methods and renewable energies Natural scientists interested in advanced heuristics The Author Dr. Daniel Lückehe defended his PhD thesis in the PhD program “System Integration of Renewable Energy” at the Carl von Ossietzky University in Oldenburg, Germany. As postdoctoral researcher he conducts research in computational health informatics at the Leibnitz University in Hanover, Germany. 
650 0 |a Artificial intelligence. 
650 0 |a Sustainable development. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Sustainable Development.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/U34000 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658184643 
776 0 8 |i Printed edition:  |z 9783658184667 
856 4 0 |u https://doi.org/10.1007/978-3-658-18465-0 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)