From Basic Survival Analytic Theory to a Non-Standard Application

Georg Zimmermann provides a mathematically rigorous treatment of basic survival analytic methods. His emphasis is also placed on various questions and problems, especially with regard to life expectancy calculations arising from a particular real-life dataset on patients with epilepsy. The author sh...

Full description

Main Author: Zimmermann, Georg. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2017.
Edition:1st ed. 2017.
Series:BestMasters,
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-17719-5
LEADER 03223nam a22005055i 4500
001 978-3-658-17719-5
003 DE-He213
005 20210618231251.0
007 cr nn 008mamaa
008 170401s2017 gw | s |||| 0|eng d
020 |a 9783658177195  |9 978-3-658-17719-5 
024 7 |a 10.1007/978-3-658-17719-5  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Zimmermann, Georg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a From Basic Survival Analytic Theory to a Non-Standard Application  |h [electronic resource] /  |c by Georg Zimmermann. 
250 |a 1st ed. 2017. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2017. 
300 |a IX, 100 p. 9 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a BestMasters,  |x 2625-3577 
505 0 |a Regression Models for Survival Data -- Model Checking Procedures -- Life Expectancy. 
520 |a Georg Zimmermann provides a mathematically rigorous treatment of basic survival analytic methods. His emphasis is also placed on various questions and problems, especially with regard to life expectancy calculations arising from a particular real-life dataset on patients with epilepsy. The author shows both the step-by-step analyses of that dataset and the theory the analyses are based on. He demonstrates that one may face serious and sometimes unexpected problems, even when conducting very basic analyses. Moreover, the reader learns that a practically relevant research question may look rather simple at first sight. Nevertheless, compared to standard textbooks, a more detailed account of the theory underlying life expectancy calculations is needed in order to provide a mathematically rigorous framework. Contents Regression Models for Survival Data Model Checking Procedures Life Expectancy Target Groups Researchers, lecturers, and students in the fields of mathematics and statistics Academics and experts working in the life sciences, especially in the medical field The Author Georg Zimmermann is a PhD student at the University of Salzburg and research associate at Christian-Doppler-Klinik, Salzburg. 
650 0 |a Probabilities. 
650 0 |a Biomathematics. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Mathematical and Computational Biology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658177188 
776 0 8 |i Printed edition:  |z 9783658177201 
830 0 |a BestMasters,  |x 2625-3577 
856 4 0 |u https://doi.org/10.1007/978-3-658-17719-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)