Managing Intermittent Demand

This work aims to increase the service level and to reduce the inventory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressi...

Full description

Main Author: Engelmeyer, Torben. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Gabler, 2016.
Edition:1st ed. 2016.
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-14062-5
LEADER 03438nam a22004815i 4500
001 978-3-658-14062-5
003 DE-He213
005 20210620073821.0
007 cr nn 008mamaa
008 160502s2016 gw | s |||| 0|eng d
020 |a 9783658140625  |9 978-3-658-14062-5 
024 7 |a 10.1007/978-3-658-14062-5  |2 doi 
050 4 |a HD38.5 
072 7 |a KJMV  |2 bicssc 
072 7 |a BUS087000  |2 bisacsh 
072 7 |a KJMV9  |2 thema 
082 0 4 |a 658.5  |2 23 
100 1 |a Engelmeyer, Torben.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Managing Intermittent Demand  |h [electronic resource] /  |c by Torben Engelmeyer. 
250 |a 1st ed. 2016. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Gabler,  |c 2016. 
300 |a XV, 157 p. 65 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Classification Approaches to Identify Intermittent Demand Series -- Consistent Forecast-Based Inventory Model -- Extensive Comparison of the Inventory Performance Among Different Forecast/Inventory Model Combinations. 
520 |a This work aims to increase the service level and to reduce the inventory costs by combining the forecast and inventory model into one consistent forecast-based inventory model. This new model is based on the prediction of the future probability distribution by assuming an integer-valued autoregressive process as demand process. The developed algorithms can be used to identify, estimate, and predict the demand as well as optimize the inventory decision of intermittent demand series. In an extensive simulation study the new model is compared with a wide range of conventional forecast/inventory model combinations. By using the consistent approach, the mean inventory level is lowered whereas the service level is increased. Additionally, a modern multi-criteria inventory classification scheme is presented to distinguish different demand series clusters. Contents Classification Approaches to Identify Intermittent Demand Series Consistent Forecast-Based Inventory Model Extensive Comparison of the Inventory Performance Among Different Forecast/Inventory Model Combinations Target Group Students and researchers interested in business analytics and operations management Inventory managers and supply chain experts The Author Dr. Torben Engelmeyer works as a research assistant at the chair of International Economics - University of Wuppertal, Germany. 
650 0 |a Business logistics. 
650 0 |a Operations research. 
650 0 |a Decision making. 
650 1 4 |a Logistics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/519020 
650 2 4 |a Supply Chain Management.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/519030 
650 2 4 |a Operations Research/Decision Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/521000 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658140618 
776 0 8 |i Printed edition:  |z 9783658140632 
856 4 0 |u https://doi.org/10.1007/978-3-658-14062-5 
912 |a ZDB-2-BUM 
912 |a ZDB-2-SXBM 
950 |a Business and Management (SpringerNature-41169) 
950 |a Business and Management (R0) (SpringerNature-43719)