Algorithmic Differentiation of Pragma-Defined Parallel Regions Differentiating Computer Programs Containing OpenMP /

Numerical programs often use parallel programming techniques such as OpenMP to compute the program's output values as efficient as possible. In addition, derivative values of these output values with respect to certain input values play a crucial role. To achieve code that computes not only the...

Full description

Main Author: Förster, Michael. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-07597-2
LEADER 03759nam a22005175i 4500
001 978-3-658-07597-2
003 DE-He213
005 20210619141839.0
007 cr nn 008mamaa
008 141009s2014 gw | s |||| 0|eng d
020 |a 9783658075972  |9 978-3-658-07597-2 
024 7 |a 10.1007/978-3-658-07597-2  |2 doi 
050 4 |a QA76.9.M35 
072 7 |a UYA  |2 bicssc 
072 7 |a COM018000  |2 bisacsh 
072 7 |a UYA  |2 thema 
072 7 |a UYAM  |2 thema 
082 0 4 |a 004.0151  |2 23 
100 1 |a Förster, Michael.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Algorithmic Differentiation of Pragma-Defined Parallel Regions  |h [electronic resource] :  |b Differentiating Computer Programs Containing OpenMP /  |c by Michael Förster. 
250 |a 1st ed. 2014. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2014. 
300 |a XI, 405 p. 41 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction with Examples from Numerical Optimization -- Algorithmic Differentiation by Source Transformation -- Transformation rules for Parallel Code Regions (e.g. OpenMP 3.1) -- Static Program Analysis. 
520 |a Numerical programs often use parallel programming techniques such as OpenMP to compute the program's output values as efficient as possible. In addition, derivative values of these output values with respect to certain input values play a crucial role. To achieve code that computes not only the output values simultaneously but also the derivative values, this work introduces several source-to-source transformation rules. These rules are based on a technique called algorithmic differentiation. The main focus of this work lies on the important reverse mode of algorithmic differentiation. The inherent data-flow reversal of the reverse mode must be handled properly during the transformation. The first part of the work examines the transformations in a very general way since pragma-based parallel regions occur in many different kinds such as OpenMP, OpenACC, and Intel Phi. The second part describes the transformation rules of the most important OpenMP constructs. Contents Introduction with Examples from Numerical Optimization Algorithmic Differentiation by Source Transformation Transformation rules for Parallel Code Regions (e.g. OpenMP 3.1) Static Program Analysis Target Groups Lecturers and students of computer science Computer scientists, engineers, mathematicians and numerical analysts The Author Michael Förster is currently Research Associate of the Institute Software and Tools for Computational Engineering, RWTH Aachen University. 
650 0 |a Computer science—Mathematics. 
650 0 |a Artificial intelligence. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Mathematics of Computing.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I17001 
650 2 4 |a Artificial Intelligence.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I21000 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658075965 
776 0 8 |i Printed edition:  |z 9783658075989 
776 0 8 |i Printed edition:  |z 9783658274078 
856 4 0 |u https://doi.org/10.1007/978-3-658-07597-2 
912 |a ZDB-2-SCS 
912 |a ZDB-2-SXCS 
950 |a Computer Science (SpringerNature-11645) 
950 |a Computer Science (R0) (SpringerNature-43710)