Data-Driven Design of Fault Diagnosis Systems Nonlinear Multimode Processes /

In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it...

Full description

Main Author: Haghani Abandan Sari, Adel. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Vieweg, 2014.
Edition:1st ed. 2014.
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-05807-4
LEADER 03887nam a22005535i 4500
001 978-3-658-05807-4
003 DE-He213
005 20210618015121.0
007 cr nn 008mamaa
008 140422s2014 gw | s |||| 0|eng d
020 |a 9783658058074  |9 978-3-658-05807-4 
024 7 |a 10.1007/978-3-658-05807-4  |2 doi 
050 4 |a TJ210.2-211.495 
050 4 |a TJ163.12 
072 7 |a TJFM  |2 bicssc 
072 7 |a TEC004000  |2 bisacsh 
072 7 |a TJFM  |2 thema 
072 7 |a TJFD  |2 thema 
082 0 4 |a 629.8  |2 23 
100 1 |a Haghani Abandan Sari, Adel.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Data-Driven Design of Fault Diagnosis Systems  |h [electronic resource] :  |b Nonlinear Multimode Processes /  |c by Adel Haghani Abandan Sari. 
250 |a 1st ed. 2014. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Vieweg,  |c 2014. 
300 |a XIX, 136 p. 39 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
505 0 |a Introduction -- An overview of fault diagnosis techniques -- Fault detection in multimode nonlinear systems -- Fault detection in multimode nonlinear dynamic systems -- Fault diagnosis in multimode nonlinear processes -- Bayesian approach for fault treatment -- Application and benchmark study -- Summary. 
520 |a In many industrial applications early detection and diagnosis of abnormal behavior of the plant is of great importance. During the last decades, the complexity of process plants has been drastically increased, which imposes great challenges in development of model-based monitoring approaches and it sometimes becomes unrealistic for modern large-scale processes. The main objective of Adel Haghani Abandan Sari is to study efficient fault diagnosis techniques for complex industrial systems using process historical data and considering the nonlinear behavior of the process. To this end, different methods are presented to solve the fault diagnosis problem based on the overall behavior of the process and its dynamics. Moreover, a novel technique is proposed for fault isolation and determination of the root-cause of the faults in the system, based on the fault impacts on the process measurements. Contents Process monitoring Fault diagnosis and fault-tolerant control Data-driven approaches and decision making Target Groups Graduate students and scientists of automatic control and process engineering Engineers in field of process control and monitoring, mechatronic About the Author Adel Haghani Abandan Sari is research assistant with Institute of Automation, university of Rostock. His research interests include data-driven process monitoring and fault-tolerant control with focus on large-scale industrial processes. 
650 0 |a Control engineering. 
650 0 |a Robotics. 
650 0 |a Mechatronics. 
650 0 |a Industrial engineering. 
650 0 |a Production engineering. 
650 0 |a Applied mathematics. 
650 0 |a Engineering mathematics. 
650 1 4 |a Control, Robotics, Mechatronics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T19000 
650 2 4 |a Industrial and Production Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T22008 
650 2 4 |a Mathematical and Computational Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T11006 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658058067 
776 0 8 |i Printed edition:  |z 9783658058081 
856 4 0 |u https://doi.org/10.1007/978-3-658-05807-4 
912 |a ZDB-2-ENG 
912 |a ZDB-2-SXE 
950 |a Engineering (SpringerNature-11647) 
950 |a Engineering (R0) (SpringerNature-43712)