A Direct Method for Parabolic PDE Constrained Optimization Problems

Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the u...

Full description

Main Author: Potschka, Andreas. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Wiesbaden : Springer Fachmedien Wiesbaden : Imprint: Springer Spektrum, 2014.
Edition:1st ed. 2014.
Series:Advances in Numerical Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-658-04476-3
LEADER 03864nam a22005295i 4500
001 978-3-658-04476-3
003 DE-He213
005 20210617032546.0
007 cr nn 008mamaa
008 131129s2014 gw | s |||| 0|eng d
020 |a 9783658044763  |9 978-3-658-04476-3 
024 7 |a 10.1007/978-3-658-04476-3  |2 doi 
050 4 |a QA402.5-402.6 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
082 0 4 |a 519.6  |2 23 
100 1 |a Potschka, Andreas.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Direct Method for Parabolic PDE Constrained Optimization Problems  |h [electronic resource] /  |c by Andreas Potschka. 
250 |a 1st ed. 2014. 
264 1 |a Wiesbaden :  |b Springer Fachmedien Wiesbaden :  |b Imprint: Springer Spektrum,  |c 2014. 
300 |a XIV, 216 p. 30 illus.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Advances in Numerical Mathematics,  |x 1616-2994 
505 0 |a Parabolic PDE Constrained Optimization Problems -- Two-Grid Newton-Picard Inexact SQP -- Structure Exploiting Solution of QPs -- Applications and Numerical Results. 
520 |a Andreas Potschka discusses a direct multiple shooting method for dynamic optimization problems constrained by nonlinear, possibly time-periodic, parabolic partial differential equations. In contrast to indirect methods, this approach automatically computes adjoint derivatives without requiring the user to formulate adjoint equations, which can be time-consuming and error-prone. The author describes and analyzes in detail a globalized inexact Sequential Quadratic Programming method that exploits the mathematical structures of this approach and problem class for fast numerical performance. The book features applications, including results for a real-world chemical engineering separation problem.   Contents ·         Parabolic PDE Constrained Optimization Problems ·         Two-Grid Newton-Picard Inexact SQP ·         Structure Exploiting Solution of QPs ·         Applications and Numerical Results       Target Groups ·         Researchers and students in the fields of mathematics, information systems, and scientific computing ·         Users with PDE constrained optimization problems, in particular in (bio-)chemical engineering   The Author Dr. Andreas Potschka is a postdoctoral researcher in the Simulation and Optimization group of Prof. Dr. Dres. h. c. Hans Georg Bock at the Interdisciplinary Center for Scientific Computing, Heidelberg University. He is the head of the research group Model-Based Optimizing Control. 
650 0 |a Mathematical optimization. 
650 0 |a Mathematics. 
650 0 |a Biochemical engineering. 
650 0 |a Partial differential equations. 
650 1 4 |a Optimization.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M26008 
650 2 4 |a Mathematics, general.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M00009 
650 2 4 |a Biochemical Engineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/C12029 
650 2 4 |a Partial Differential Equations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12155 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783658044770 
776 0 8 |i Printed edition:  |z 9783658044756 
830 0 |a Advances in Numerical Mathematics,  |x 1616-2994 
856 4 0 |u https://doi.org/10.1007/978-3-658-04476-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)