Iwasawa Theory 2012 State of the Art and Recent Advances /

This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Bouganis, Thanasis. (Editor, http://id.loc.gov/vocabulary/relators/edt), Venjakob, Otmar. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edition:1st ed. 2014.
Series:Contributions in Mathematical and Computational Sciences, 7
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-55245-8
LEADER 05214nam a22006135i 4500
001 978-3-642-55245-8
003 DE-He213
005 20210617061056.0
007 cr nn 008mamaa
008 141208s2014 gw | s |||| 0|eng d
020 |a 9783642552458  |9 978-3-642-55245-8 
024 7 |a 10.1007/978-3-642-55245-8  |2 doi 
050 4 |a QA241-247.5 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
082 0 4 |a 512.7  |2 23 
245 1 0 |a Iwasawa Theory 2012  |h [electronic resource] :  |b State of the Art and Recent Advances /  |c edited by Thanasis Bouganis, Otmar Venjakob. 
250 |a 1st ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XII, 483 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Contributions in Mathematical and Computational Sciences,  |x 2191-303X ;  |v 7 
505 0 |a Lecture notes: C. Wuthrich: Overview of some Iwasawa theory -- X. Wan: Introduction to Skinner-Urban's work on the Iwasawa main conjecture for GL -- Research and Survey articles: D. Benois: On extra zeros of p-adic L-functions: the crystalline case -- Th. Bouganis: On special L-values attached to Siegel modular forms -- T. Fukaya et al: Modular symbols in Iwasawa theory -- T. Fukuda et al: Weber's class number one problem -- R. Greenberg: On p-adic Artin L-functions II -- M.-L. Hsieh: Iwasawa μ-invariants of p-adic Hecke L-functions -- S. Kobayashi: The p-adic height pairing on abelian varieties at non-ordinary primes -- J. Kohlhaase: Iwasawa modules arising from deformation spaces of p-divisible formal group laws -- M. Kurihara: The structure of Selmer groups for elliptic curves and modular symbols -- D. Loeffler: P-adic integration on ray class groups and non-ordinary p-adic L-functions -- T. Nguyen Quang Do: On equivariant characteristic ideals of real classes -- E. Urban: Nearly over convergent modular forms -- M. Witte: Non-commutative L-functions for varieties over finite fields -- Z. Wojtkowiak: On $\widehat{\mathbb{Z}}$-zeta function. 
520 |a This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan). 
650 0 |a Number theory. 
650 0 |a Algebraic geometry. 
650 0 |a K-theory. 
650 0 |a Topological groups. 
650 0 |a Lie groups. 
650 0 |a Algebra. 
650 0 |a Functions of complex variables. 
650 1 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
650 2 4 |a Algebraic Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11019 
650 2 4 |a K-Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11086 
650 2 4 |a Topological Groups, Lie Groups.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11132 
650 2 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Functions of a Complex Variable.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12074 
700 1 |a Bouganis, Thanasis.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Venjakob, Otmar.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642552465 
776 0 8 |i Printed edition:  |z 9783642552441 
776 0 8 |i Printed edition:  |z 9783662512210 
830 0 |a Contributions in Mathematical and Computational Sciences,  |x 2191-303X ;  |v 7 
856 4 0 |u https://doi.org/10.1007/978-3-642-55245-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)