An Introduction to Markov Processes

This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are:...

Full description

Main Author: Stroock, Daniel W. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2014.
Edition:2nd ed. 2014.
Series:Graduate Texts in Mathematics, 230
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-40523-5
LEADER 03371nam a22005295i 4500
001 978-3-642-40523-5
003 DE-He213
005 20210616015147.0
007 cr nn 008mamaa
008 131028s2014 gw | s |||| 0|eng d
020 |a 9783642405235  |9 978-3-642-40523-5 
024 7 |a 10.1007/978-3-642-40523-5  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
100 1 |a Stroock, Daniel W.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Introduction to Markov Processes  |h [electronic resource] /  |c by Daniel W. Stroock. 
250 |a 2nd ed. 2014. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2014. 
300 |a XVII, 203 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 230 
505 0 |a Preface -- Random Walks, a Good Place to Begin -- Doeblin's Theory for Markov Chains -- Stationary Probabilities -- More about the Ergodic Theory of Markov Chains -- Markov Processes in Continuous Time -- Reversible Markov Processes -- A minimal Introduction to Measure Theory -- Notation -- References -- Index. 
520 |a This book provides a rigorous but elementary introduction to the theory of Markov Processes on a countable state space. It should be accessible to students with a solid undergraduate background in mathematics, including students from engineering, economics, physics, and biology. Topics covered are: Doeblin's theory, general ergodic properties, and continuous time processes. Applications are dispersed throughout the book. In addition, a whole chapter is devoted to reversible processes and the use of their associated Dirichlet forms to estimate the rate of convergence to equilibrium. These results are then applied to the analysis of the Metropolis (a.k.a simulated annealing) algorithm. The corrected and enlarged 2nd edition contains a new chapter in which the author develops computational methods for Markov chains on a finite state space. Most intriguing is the section with a new technique for computing stationary measures, which is applied to derivations of Wilson's algorithm and Kirchoff's formula for spanning trees in a connected graph. 
650 0 |a Probabilities. 
650 0 |a Dynamics. 
650 0 |a Ergodic theory. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Dynamical Systems and Ergodic Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642405242 
776 0 8 |i Printed edition:  |z 9783642405228 
776 0 8 |i Printed edition:  |z 9783662517826 
830 0 |a Graduate Texts in Mathematics,  |x 0072-5285 ;  |v 230 
856 4 0 |u https://doi.org/10.1007/978-3-642-40523-5 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)