Geometry of Continued Fractions

Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical th...

Full description

Main Author: Karpenkov, Oleg. (Author, http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Algorithms and Computation in Mathematics, 26
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-39368-6
LEADER 04888nam a22005775i 4500
001 978-3-642-39368-6
003 DE-He213
005 20210618024547.0
007 cr nn 008mamaa
008 130812s2013 gw | s |||| 0|eng d
020 |a 9783642393686  |9 978-3-642-39368-6 
024 7 |a 10.1007/978-3-642-39368-6  |2 doi 
050 4 |a QA150-272 
072 7 |a PBF  |2 bicssc 
072 7 |a MAT002000  |2 bisacsh 
072 7 |a PBF  |2 thema 
082 0 4 |a 512  |2 23 
100 1 |a Karpenkov, Oleg.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 0 |a Geometry of Continued Fractions  |h [electronic resource] /  |c by Oleg Karpenkov. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XVII, 405 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 26 
505 0 |a Preface -- Introduction -- Part 1. Regular continued fractions: Chapter 1. Classical notions and definitions -- Chapter 2. On integer geometry -- Chapter 3. Geometry of regular continued fractions -- Chapter 4. Complete invariant of integer angles -- Chapter 5. Integer trigonometry for integer angles -- Chapter 6. Integer angles of integer triangles -- Chapter 7. Continued fractions and SL(2; Z) conjugacy classes. Elements of Gauss Reduction Theory. Markoff spectrum -- Chapter 8. Lagrange theorem -- Chapter 9. Gauss-Kuzmin statistics -- Chapter 10. Geometric approximation aspects -- Chapter 11. Geometry of continued fractions with real elements and the second Kepler law -- Chapter 12. Integer angles of polygons and global relations to toric singularities -- Part 2. Klein polyhedra: Chapter 13. Basic notions and definitions of multidimensional integer geometry -- Chapter 14. On empty simplices, pyramids, parallelepipeds -- Chapter 15. Multidimensional continued fractions in the sense of Klein -- Chapter 16. Dirichlet groups and lattice reduction -- Chapter 17. Periodicity of Klein polyhedra. Generalization of Lagrange theorem -- Chapter 18. Multidimensional Gauss-Kuzmin statistics -- Chapter 19. On construction of multidimensional continued fractions -- Chapter 20. Gauss Reduction in higher dimensions -- Chapter 21. Decomposable forms. Relation to Littlewood and Oppenheim conjectures -- Chapter 22. Approximation of maximal commutative subgroups -- Chapter 23. Other generalizations of continued fractions -- Bibliography . 
520 |a Traditionally a subject of number theory, continued fractions appear in dynamical systems, algebraic geometry, topology, and even celestial mechanics. The rise of computational geometry has resulted in renewed interest in multidimensional generalizations of continued fractions. Numerous classical theorems have been extended to the multidimensional case, casting light on phenomena in diverse areas of mathematics. This book introduces a new geometric vision of continued fractions. It covers several applications to questions related to such areas as Diophantine approximation, algebraic number theory, and toric geometry.   The reader will find an overview of current progress in the geometric theory of multidimensional continued fractions accompanied by currently open problems. Whenever possible, we illustrate geometric constructions with figures and examples. Each chapter has exercises useful for undergraduate or graduate courses. 
650 0 |a Algebra. 
650 0 |a Ordered algebraic structures. 
650 0 |a Approximation theory. 
650 0 |a Convex geometry . 
650 0 |a Discrete geometry. 
650 0 |a Number theory. 
650 1 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Order, Lattices, Ordered Algebraic Structures.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11124 
650 2 4 |a Approximations and Expansions.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12023 
650 2 4 |a Convex and Discrete Geometry.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M21014 
650 2 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642444241 
776 0 8 |i Printed edition:  |z 9783642393693 
776 0 8 |i Printed edition:  |z 9783642393679 
830 0 |a Algorithms and Computation in Mathematics,  |x 1431-1550 ;  |v 26 
856 4 0 |u https://doi.org/10.1007/978-3-642-39368-6 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)