Limit Theorems in Probability, Statistics and Number Theory In Honor of Friedrich Götze /

Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and t...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Eichelsbacher, Peter. (Editor, http://id.loc.gov/vocabulary/relators/edt), Elsner, Guido. (Editor, http://id.loc.gov/vocabulary/relators/edt), Kösters, Holger. (Editor, http://id.loc.gov/vocabulary/relators/edt), Löwe, Matthias. (Editor, http://id.loc.gov/vocabulary/relators/edt), Merkl, Franz. (Editor, http://id.loc.gov/vocabulary/relators/edt), Rolles, Silke. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Springer Proceedings in Mathematics & Statistics, 42
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-36068-8
LEADER 04858nam a22006015i 4500
001 978-3-642-36068-8
003 DE-He213
005 20210618004734.0
007 cr nn 008mamaa
008 130424s2013 gw | s |||| 0|eng d
020 |a 9783642360688  |9 978-3-642-36068-8 
024 7 |a 10.1007/978-3-642-36068-8  |2 doi 
050 4 |a QA273.A1-274.9 
050 4 |a QA274-274.9 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
072 7 |a PBWL  |2 thema 
082 0 4 |a 519.2  |2 23 
245 1 0 |a Limit Theorems in Probability, Statistics and Number Theory  |h [electronic resource] :  |b In Honor of Friedrich Götze /  |c edited by Peter Eichelsbacher, Guido Elsner, Holger Kösters, Matthias Löwe, Franz Merkl, Silke Rolles. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VIII, 317 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 42 
505 0 |a W. van Zwet: A conversation with Friedrich Götze -- V. Bernik, V. Beresnevich, F. Götze, O. Kukso: Distribution of algebraic numbers and metric theory of Diophantine approximation -- J. Marklof: Fine-scale statistics for the multidimensional Farey sequence -- S. G. Bobkov, M. M. Madiman: On the problem of reversibility of the entropy power inequality -- G. P. Chistyakov: On probability measures with unbounded angular ratio -- M. Gordin: CLT for stationary normal Markov chains via generalized coboundaries -- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems -- T. Mai, R. Speicher: Operator-valued and multivariate free Berry-Esseen theorems -- R. Bhattacharya: A nonparametric theory of statistics on manifolds -- J. Lember, H. Matzinger, F. Torres: Proportion of gaps and uctuations of the optimal score in random sequence comparison -- Y. V. Prokhorov, V. V. Ulyanov: Some approximation problems in statistics and probability -- H. Döring, P. Eichelsbacher: Moderate deviations for the determinant of Wigner matrices -- O. Friesen, M. Löwe: The semicircle law for matrices with dependent entries -- A. Tikhomirov: Limit theorems for random matrices. 
520 |a Limit theorems and asymptotic results form a central topic in probability theory and mathematical statistics. New and non-classical limit theorems have been discovered for processes in random environments, especially in connection with random matrix theory and free probability. These questions and the techniques for answering them combine asymptotic enumerative combinatorics, particle systems and approximation theory, and are important for new approaches in geometric and metric number theory as well. Thus, the contributions in this book include a wide range of applications with surprising connections ranging from longest common subsequences for words, permutation groups, random matrices and free probability to entropy problems and metric number theory. The book is the product of  a conference that took place in August 2011 in Bielefeld, Germany to celebrate the 60th birthday of Friedrich Götze, a noted expert in this field. 
650 0 |a Probabilities. 
650 0 |a Functional analysis. 
650 0 |a Number theory. 
650 1 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Functional Analysis.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12066 
650 2 4 |a Number Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M25001 
700 1 |a Eichelsbacher, Peter.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Elsner, Guido.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Kösters, Holger.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Löwe, Matthias.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Merkl, Franz.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Rolles, Silke.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642360671 
776 0 8 |i Printed edition:  |z 9783642360695 
776 0 8 |i Printed edition:  |z 9783642433962 
830 0 |a Springer Proceedings in Mathematics & Statistics,  |x 2194-1009 ;  |v 42 
856 4 0 |u https://doi.org/10.1007/978-3-642-36068-8 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)