An Operator Semigroup in Mathematical Genetics

This authored monograph presents a mathematical description of the time evolution of neutral genomic regions in terms of the differential Lyapunov equation. The qualitative behavior of its solutions, with respect to different mutation models and demographic patterns, can be characterized using opera...

Full description

Main Authors: Bobrowski, Adam. (Author, http://id.loc.gov/vocabulary/relators/aut), Kimmel, Marek. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2015.
Edition:1st ed. 2015.
Series:SpringerBriefs in Mathematical Methods,
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-35958-3
LEADER 03481nam a22005895i 4500
001 978-3-642-35958-3
003 DE-He213
005 20210617122712.0
007 cr nn 008mamaa
008 150316s2015 gw | s |||| 0|eng d
020 |a 9783642359583  |9 978-3-642-35958-3 
024 7 |a 10.1007/978-3-642-35958-3  |2 doi 
050 4 |a QH323.5 
050 4 |a QH455 
072 7 |a PBW  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBW  |2 thema 
082 0 4 |a 576.58  |2 23 
082 0 4 |a 577.88  |2 23 
100 1 |a Bobrowski, Adam.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 3 |a An Operator Semigroup in Mathematical Genetics  |h [electronic resource] /  |c by Adam Bobrowski, Marek Kimmel. 
250 |a 1st ed. 2015. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2015. 
300 |a VI, 88 p. 9 illus., 8 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a SpringerBriefs in Mathematical Methods,  |x 2365-0826 
505 0 |a 1 Introduction -- 2 Genetic background -- 3 Motivating example -- 4 Mathematical tools -- 5 Master Equation -- 6 Epilogue. 
520 |a This authored monograph presents a mathematical description of the time evolution of neutral genomic regions in terms of the differential Lyapunov equation. The qualitative behavior of its solutions, with respect to different mutation models and demographic patterns, can be characterized using operator semi group theory. Mutation and drift are two of the main genetic forces, which act on genes of individuals in populations. Their effects are influenced by population dynamics. This book covers the application to two mutation models: single step mutation for microsatellite loci and single-base substitutions. The effects of demographic change to the asymptotic of the distribution are also covered. The target audience primarily covers researchers and experts in the field but the book may also be beneficial for graduate students. 
650 0 |a Biomathematics. 
650 0 |a Operator theory. 
650 0 |a Biomedical engineering. 
650 0 |a Probabilities. 
650 0 |a Animal genetics. 
650 1 4 |a Genetics and Population Dynamics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M31010 
650 2 4 |a Operator Theory.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M12139 
650 2 4 |a Biomedical Engineering and Bioengineering.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 
650 2 4 |a Probability Theory and Stochastic Processes.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M27004 
650 2 4 |a Animal Genetics and Genomics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/L32030 
700 1 |a Kimmel, Marek.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642359590 
776 0 8 |i Printed edition:  |z 9783642359576 
830 0 |a SpringerBriefs in Mathematical Methods,  |x 2365-0826 
856 4 0 |u https://doi.org/10.1007/978-3-642-35958-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)