Cylindric-like Algebras and Algebraic Logic

Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian alg...

Full description

Corporate Author: SpringerLink (Online service)
Other Authors: Andréka, Hajnal. (Editor, http://id.loc.gov/vocabulary/relators/edt), Ferenczi, Miklós. (Editor, http://id.loc.gov/vocabulary/relators/edt), Németi, István. (Editor, http://id.loc.gov/vocabulary/relators/edt)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Bolyai Society Mathematical Studies, 22
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-35025-2
LEADER 04718nam a22005655i 4500
001 978-3-642-35025-2
003 DE-He213
005 20210617105628.0
007 cr nn 008mamaa
008 140127s2013 gw | s |||| 0|eng d
020 |a 9783642350252  |9 978-3-642-35025-2 
024 7 |a 10.1007/978-3-642-35025-2  |2 doi 
050 4 |a QA8.9-10.3 
072 7 |a PBC  |2 bicssc 
072 7 |a MAT018000  |2 bisacsh 
072 7 |a PBC  |2 thema 
072 7 |a PBCD  |2 thema 
082 0 4 |a 511.3  |2 23 
245 1 0 |a Cylindric-like Algebras and Algebraic Logic  |h [electronic resource] /  |c edited by Hajnal Andréka, Miklós Ferenczi, István Németi. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a VI, 474 p.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Bolyai Society Mathematical Studies,  |x 1217-4696 ;  |v 22 
505 0 |a Introduction -- H. Andréka and I. Németi: Reducing First-order Logic to Df3, Free Algebras -- N.Bezhanishvili: Varieties of Two-Dimensional Cylindric Algebras -- R. Hirsch and I. Hodkinson: Completions and Complete Representations -- J. Madarász and T. Sayed Ahmed: Amalgamation, Interpolation and Epimorphisms in Algebraic Logic -- T. Sayed Ahmed: Neat Reducts and Neat Embeddings in Cylindric Algebras -- M. Ferenczi: A New Representation Theory: Representing Cylindric-like Algebras by Relativized Set Algebras -- A. Simon: Representing all Cylindric Algebras by Twisting, On a Problem of Henkin -- A. Kurucz: Representable Cylindric Algebras and Many-Dimensional Modal Logics -- T. Sayed Ahmed: Completions, Complete Representations and Omitting Types -- G. Serény: Elements of Cylindric Algebraic Model Theory -- Y. Venema: Cylindric Modal Logic -- J. van Benthem: Crs and Guarded Logics: A Fruitful Contact -- R. S. Dordevic and M. D. Raskovic: Cylindric Probability Algebras.-I. Duentsch: Cylindric Algebras and Relational Databases. – M. Ferenczi: Probability Measures and Measurable Functions on Cylindric Algebras. – A. Mann: Cylindric Set Algebras and IF Logic. – G. Sági: Polyadic Algebras. – I. Sain: Definability Issues in Universal Logic. – Bibliography. - Index. 
520 |a Algebraic logic is a subject in the interface between logic, algebra and geometry, it has strong connections with category theory and combinatorics. Tarski’s quest for finding structure in logic leads to cylindric-like algebras as studied in this book, they are among the main players in Tarskian algebraic logic. Cylindric algebra theory can be viewed in many ways:  as an algebraic form of definability theory, as a study of higher-dimensional relations, as an enrichment of Boolean Algebra theory, or, as logic in geometric form (“cylindric” in the name refers to geometric aspects). Cylindric-like algebras have a wide range of applications, in, e.g., natural language theory, data-base theory, stochastics, and even in relativity theory. The present volume, consisting of 18 survey papers, intends to give an overview of the main achievements and new research directions in the past 30 years, since the publication of the Henkin-Monk-Tarski monographs. It is dedicated to the memory of Leon Henkin. 
650 0 |a Mathematical logic. 
650 0 |a Algebra. 
650 0 |a Combinatorics. 
650 1 4 |a Mathematical Logic and Foundations.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M24005 
650 2 4 |a Algebra.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M11000 
650 2 4 |a Combinatorics.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M29010 
650 2 4 |a Mathematical Logic and Formal Languages.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/I16048 
700 1 |a Andréka, Hajnal.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Ferenczi, Miklós.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
700 1 |a Németi, István.  |e editor.  |4 edt  |4 http://id.loc.gov/vocabulary/relators/edt 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642350245 
776 0 8 |i Printed edition:  |z 9783642350269 
776 0 8 |i Printed edition:  |z 9783642437991 
830 0 |a Bolyai Society Mathematical Studies,  |x 1217-4696 ;  |v 22 
856 4 0 |u https://doi.org/10.1007/978-3-642-35025-2 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)