A Guide to the Classification Theorem for Compact Surfaces

This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a compr...

Full description

Main Authors: Gallier, Jean. (Author, http://id.loc.gov/vocabulary/relators/aut), Xu, Dianna. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Geometry and Computing,
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-34364-3
LEADER 03926nam a22005415i 4500
001 978-3-642-34364-3
003 DE-He213
005 20210618012258.0
007 cr nn 008mamaa
008 130217s2013 gw | s |||| 0|eng d
020 |a 9783642343643  |9 978-3-642-34364-3 
024 7 |a 10.1007/978-3-642-34364-3  |2 doi 
050 4 |a QA611-614.97 
072 7 |a PBP  |2 bicssc 
072 7 |a MAT038000  |2 bisacsh 
072 7 |a PBP  |2 thema 
082 0 4 |a 514  |2 23 
100 1 |a Gallier, Jean.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
245 1 2 |a A Guide to the Classification Theorem for Compact Surfaces  |h [electronic resource] /  |c by Jean Gallier, Dianna Xu. 
250 |a 1st ed. 2013. 
264 1 |a Berlin, Heidelberg :  |b Springer Berlin Heidelberg :  |b Imprint: Springer,  |c 2013. 
300 |a XII, 178 p. 78 illus., 20 illus. in color.  |b online resource. 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Geometry and Computing,  |x 1866-6795 
505 0 |a The Classification Theorem: Informal Presentation -- Surfaces -- Simplices, Complexes, and Triangulations -- The Fundamental Group, Orientability -- Homology Groups -- The Classification Theorem for Compact Surfaces -- Viewing the Real Projective Plane in R3 -- Proof of Proposition 5.1 -- Topological Preliminaries -- History of the Classification Theorem -- Every Surface Can be Triangulated -- Notes . 
520 |a This welcome boon for students of algebraic topology cuts a much-needed central path between other texts whose treatment of the classification theorem for compact surfaces is either too formalized and complex for those without detailed background knowledge, or too informal to afford students a comprehensive insight into the subject. Its dedicated, student-centred approach details a near-complete proof of this theorem, widely admired for its efficacy and formal beauty. The authors present the technical tools needed to deploy the method effectively as well as demonstrating their use in a clearly structured, worked example. Ideal for students whose mastery of algebraic topology may be a work-in-progress, the text introduces key notions such as fundamental groups, homology groups, and the Euler-Poincaré characteristic. These prerequisites are the subject of detailed appendices that enable focused, discrete learning where it is required, without interrupting the carefully planned structure of the core exposition. Gently guiding readers through the principles, theory, and applications of the classification theorem, the authors aim to foster genuine confidence in its use and in so doing encourage readers to move on to a deeper exploration of the versatile and valuable techniques available in algebraic topology. 
650 0 |a Topology. 
650 0 |a Manifolds (Mathematics). 
650 0 |a Complex manifolds. 
650 0 |a Algebraic topology. 
650 1 4 |a Topology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28000 
650 2 4 |a Manifolds and Cell Complexes (incl. Diff.Topology).  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28027 
650 2 4 |a Algebraic Topology.  |0 https://scigraph.springernature.com/ontologies/product-market-codes/M28019 
700 1 |a Xu, Dianna.  |e author.  |4 aut  |4 http://id.loc.gov/vocabulary/relators/aut 
710 2 |a SpringerLink (Online service) 
773 0 |t Springer Nature eBook 
776 0 8 |i Printed edition:  |z 9783642437106 
776 0 8 |i Printed edition:  |z 9783642343650 
776 0 8 |i Printed edition:  |z 9783642343636 
830 0 |a Geometry and Computing,  |x 1866-6795 
856 4 0 |u https://doi.org/10.1007/978-3-642-34364-3 
912 |a ZDB-2-SMA 
912 |a ZDB-2-SXMS 
950 |a Mathematics and Statistics (SpringerNature-11649) 
950 |a Mathematics and Statistics (R0) (SpringerNature-43713)