Asymptotic Solutions of Strongly Nonlinear Systems of Differential Equations

The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov’s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in th...

Full description

Main Authors: Kozlov, Valery V. (Author, http://id.loc.gov/vocabulary/relators/aut), Furta, Stanislav D. (http://id.loc.gov/vocabulary/relators/aut)
Corporate Author: SpringerLink (Online service)
Language:English
Published: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2013.
Edition:1st ed. 2013.
Series:Springer Monographs in Mathematics,
Subjects:
Online Access:https://doi.org/10.1007/978-3-642-33817-5
Summary:The book is dedicated to the construction of particular solutions of systems of ordinary differential equations in the form of series that are analogous to those used in Lyapunov’s first method. A prominent place is given to asymptotic solutions that tend to an equilibrium position, especially in the strongly nonlinear case, where the existence of such solutions can’t be inferred on the basis of the first approximation alone. The book is illustrated with a large number of concrete examples of systems in which the presence of a particular solution of a certain class is related to special properties of the system’s dynamic behavior. It is a book for students and specialists who work with dynamical systems in the fields of mechanics, mathematics, and theoretical physics.
Physical Description:XX, 264 p. online resource.
ISBN:9783642338175
ISSN:1439-7382